【MATLAB 】 EMD信号分解+希尔伯特黄变换+边际谱算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【MATLAB 】 EMD信号分解+希尔伯特黄变换+边际谱算法

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 EMD信号分解算法

EMD 分解又叫经验模态分解,英文全称为 Empirical Mode Decomposition。

EMD 是一种信号分解方法,它将一个信号分解成有限个本质模态函数 (EMD) 的和,每个 EMD 都是具有局部特征的振动模式。EMD 分解的主要步骤如下:

  1. 将信号的局部极大值和极小值连接起来,形成一些局部极值包络线。
  2. 对于每个局部极值包络线,通过线性插值得到一条平滑的包络线。然后将原信号减去该包络线,得到一条局部振荡的残差信号。
  3. 对于该残差信号,重复步骤1和2,直到无法再分解出新的局部振荡模式为止。
  4. 将所有的局部振荡模式相加,得到原始信号的EMD分解。 EMD分解的优点是能够很好地处理非线性和非平稳信号,并且不需要预先设定基函数。因此,EMD分解在信号处理、图像处理和模式识别等领域得到了广泛的应用。

要想在 MATLAB 中使用 EMD 分解首先要安装 EMD 分解的 MATLAB 工具包。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

EMD 工具包的安装:在 MATLAB 打开 package_emd 文件夹,运行 install_emd. M 以及 index_emd. M 两个函数如下图所示即可完成工具包的安装。

MATLAB 信号分解第一期-EMD:

https://mbd.pub/o/bread/ZJWZmplq

信号分解全家桶详情请参见:

https://mbd.pub/o/author-aWWWnHBsYw==/work

2 希尔伯特黄变换

希尔伯特黄变换(Hilbert-Huang Transform,简称HHT)是一种新型的信号分析方法,能够有效地处理非线性、非平稳信号。

对每一个IMF进行希尔伯特变换,可以得到该IMF的解析解。解析解包括一个实部和一个虚部,这两个部分对应于IMF的瞬时频率和瞬时幅值。通过对所有的IMF进行希尔伯特变换,可以得到整个信号的希尔伯特谱。这个谱可以用来分析信号的频率和幅值随时间的变化情况。

希尔伯特黄变换的优点在于其完全自适应性,不需要预设任何参数。此外,该方法能够处理非线性、非平稳信号,因此在许多领域,如地球物理学、生物医学工程等,得到了广泛的应用。

3 边际谱算法

边际谱算法是一种分析非高斯、非线性信号的方法,它基于EMD(经验模式分解)和希尔伯特黄变换(Huang-Hilbert Transform)。

首先,通过EMD将信号分解成一系列固有模态函数(IMF),然后对每个IMF进行希尔伯特变换,得到瞬时频率和瞬时幅值。这些瞬时频率和瞬时幅值构成了信号的希尔伯特谱。

接着,对希尔伯特谱进行边际谱分析。具体来说,将希尔伯特谱的频率和幅值视为二维空间中的一个点,对所有点按照频率进行排序,然后对每个频率点的幅值求和,就得到了边际谱。

通过边际谱,我们可以得到信号在不同频率下的能量分布情况,从而对信号进行分析。这种方法特别适合于处理非高斯、非线性信号。

4 代码获取

如下为简短的视频操作教程。

算法代码获取:

https://mbd.pub/o/bread/ZJyXm51p

https://mbd.pub/o/bread/ZJyXm59r

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。

2、若要添加个人微信号,请后台发送关键词:微信号。

3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。


记得关注公众号,并设为星标哦~谢谢啦~


目录
相关文章
|
9月前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
6月前
|
算法
基于小波变换的图像自适应增强算法
基于小波变换的图像自适应增强算法
42 0
|
8月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
8月前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
9月前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
基于广义Benders分解法的综合能源系统优化规划(matlab程序)
|
8月前
|
算法 计算机视觉
图像处理之基于采样距离变换算法
图像处理之基于采样距离变换算法
50 0
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
9月前
|
数据可视化 数据库
matlab中使用VMD(变分模态分解)对信号去噪
matlab中使用VMD(变分模态分解)对信号去噪
matlab中使用VMD(变分模态分解)对信号去噪