C++函数模板:函数模板与特例化解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: C++函数模板:函数模板与特例化解析

函数模板

模板对类型能进行参数化成【模板参数】,输入的是类型,生成的是代码。使用的时候,每指定一份类型,模板就会根据类型生成一份新的代码(比如函数模板实例化生成的是【模板函数】),有利于减少代码量,通过较少的代码也能实现函数重载。

调用函数模板的时候,一般通过<>传入【模板参数】,也就是【类型参数】。编译器生成相应的函数代码之后,再通过()传入实参。

模板的实参推演:调用模板的时候可以根据用户传入的实参的类型,推导出模板类型参数的具体类型。

以下是一个简单的 C++ 函数模板案例,用于交换两个值:

#include <iostream>
// 定义一个函数模板,用于交换两个值的内容
template <typename T>// T是一个模板参数,它表示一个占位符,一个模板参数意味着一个模板需要接收一个类型。如果有多个模板参数,则需要接收多种类型。
void swapValues(T &a, T &b) {
    T temp = a;
    a = b;
    b = temp;
0}
int main() {
    int x = 5, y = 10;
    double m = 3.14, n = 6.28;
    
    std::cout << "Before swapping: x = " << x << ", y = " << y << std::endl;
    swapValues<int>(x, y);//在函数调用点,编译器根据用户指定的类型,从原模板实例化一份代码出来,如果已经实例化代码了,则无需该代码实例化。再根据这个实例化的代码,传值参数。
    std::cout << "After swapping: x = " << x << ", y = " << y << std::endl;
    std::cout << "Before swapping: m = " << m << ", n = " << n << std::endl;
    swapValues(m, n);//模板的实参推演
    std::cout << "After swapping: m = " << m << ", n = " << n << std::endl;
    return 0;
}

注意:模板一般在头文件中定义,在源文件中进行#include包含使用。尽量不要在一个cpp文件中定义,在另一个cpp文件中使用。

模板特例化

函数模板特例化允许我们为特定类型或特定类型组合提供自定义的实现,以满足特殊需求或处理特定情况。

函数模板特例化与函数模板同名,于此同时也能和同名普通函数共存。

函数模板的特例化例子如下,细节是另起一个同名模板,但是关键字的使用方法有差异。

#include <iostream>
#include <cstring> // For strlen and strcpy
// 通用模板函数
template <typename T>
void swapValues(T &a, T &b) {
    T temp = a;
    a = b;
    b = temp;
}
// 模板特化,用于交换 const char* 类型的指针
template <>
void swapValues<const char*>(const char* &a, const char* &b) {
    // 计算字符串的长度
    size_t lengthA = std::strlen(a);
    size_t lengthB = std::strlen(b);
    // 创建临时缓冲区,用于交换字符串的内容
    char* temp = new char[lengthA + 1]; // +1 是为了容纳字符串末尾的空字符 '\0'
    // 拷贝字符串内容到临时缓冲区
    std::strcpy(temp, a);
    
    // 交换字符串指针
    delete[] a; // 释放原来指针 a 指向的内存
    a = new char[lengthB + 1]; // 为 a 分配新的内存空间
    std::strcpy(const_cast<char*>(a), b); // 使用 const_cast 将 const char* 转换为 char*,然后拷贝字符串内容到 a
    delete[] b; // 释放原来指针 b 指向的内存
    b = new char[lengthA + 1]; // 为 b 分配新的内存空间
    std::strcpy(const_cast<char*>(b), temp); // 使用 const_cast 将 const char* 转换为 char*,然后拷贝字符串内容到 b
    
    // 释放临时缓冲区
    delete[] temp;
}
int main() {
    const char* str1 = "Hello";
    const char* str2 = "World";
    std::cout << "Before swapping: str1 = " << str1 << ", str2 = " << str2 << std::endl;
    swapValues(str1, str2);
    std::cout << "After swapping: str1 = " << str1 << ", str2 = " << str2 << std::endl;
    return 0;
目录
相关文章
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
安全 编译器 C++
C++ `noexcept` 关键字的深入解析
`noexcept` 关键字在 C++ 中用于指示函数不会抛出异常,有助于编译器优化和提高程序的可靠性。它可以减少代码大小、提高执行效率,并增强程序的稳定性和可预测性。`noexcept` 还可以影响函数重载和模板特化的决策。使用时需谨慎,确保函数确实不会抛出异常,否则可能导致程序崩溃。通过合理使用 `noexcept`,开发者可以编写出更高效、更可靠的 C++ 代码。
46 1
|
2月前
|
存储 程序员 C++
深入解析C++中的函数指针与`typedef`的妙用
本文深入解析了C++中的函数指针及其与`typedef`的结合使用。通过图示和代码示例,详细介绍了函数指针的基本概念、声明和使用方法,并展示了如何利用`typedef`简化复杂的函数指针声明,提升代码的可读性和可维护性。
95 1
|
3月前
|
自然语言处理 编译器 Linux
|
3月前
|
设计模式 安全 数据库连接
【C++11】包装器:深入解析与实现技巧
本文深入探讨了C++中包装器的定义、实现方式及其应用。包装器通过封装底层细节,提供更简洁、易用的接口,常用于资源管理、接口封装和类型安全。文章详细介绍了使用RAII、智能指针、模板等技术实现包装器的方法,并通过多个案例分析展示了其在实际开发中的应用。最后,讨论了性能优化策略,帮助开发者编写高效、可靠的C++代码。
54 2
|
3月前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
|
4月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
3月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
122 2
|
2月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
2月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

推荐镜像

更多