Java并发基础:ConcurrentSkipListSet全面解析!

简介: ConcurrentSkipListSet类在多线程环境下,它能够轻松应对大量的插入、删除和查找操作,同时保持数据的完整性和一致性,其内部基于跳表数据结构的实现,确保了即使在处理大规模数据时,也能具有出色的性能表现。

Java并发基础:ConcurrentSkipListSet全面解析! - 程序员古德

内容概要

ConcurrentSkipListSet类在多线程环境下,它能够轻松应对大量的插入、删除和查找操作,同时保持数据的完整性和一致性,其内部基于跳表数据结构的实现,确保了即使在处理大规模数据时,也能具有出色的性能表现。

核心概念

ConcurrentSkipListSet类实现了一个基于SkipList(跳表)算法的可排序的并发集合,SkipList是一种可以在对数预期时间内完成搜索、插入、删除等操作的数据结构,通过维护多个指向其他元素的“跳跃”链接来实现高效查找。

假如,有一个在线的电商系统,其中有一个功能是展示最热门的商品,这个“热门”的定义可以基于多种因素,比如销量、用户评分、浏览次数等,为了实时地反映这些热门商品,需要一个数据结构来存储和更新这些信息。

考虑到电商系统可能会有多个用户同时访问和修改热门商品列表,因此,就需要一个线程安全的集合来确保数据的完整性和一致性,同时,可能还需要根据某种指标(如销量)对商品进行排序,以便用户能够快速地看到最热门的商品。

使用ConcurrentSkipListSet可以很的解决这个问题,可以将商品对象作为元素添加到 ConcurrentSkipListSet 中,并根据销量或其他指标实现 Comparator 接口来对商品进行排序,由于 ConcurrentSkipListSet 是线程安全的,多个线程可以同时向集合中添加或删除商品,而不需要额外的同步措施。它还支持高效的并发访问,因此,即使有大量的用户同时访问热门商品列表,系统也能保持较高的响应速度。

ConcurrentSkipListSet 类通常用来解决两个核心问题:

  1. 并发访问:在多线程环境中,当多个线程需要同时读取或修改一个集合时,就需要一种线程安全的数据结构来确保数据的一致性和完整性,ConcurrentSkipListSet 提供了高效的并发访问能力,它使用了一种称为“跳表”(Skip List)的数据结构,这种数据结构能够在多线程环境下实现快速的查找、插入和删除操作,而不需要对整个集合进行锁定。
  2. 有序集合:除了并发访问外,ConcurrentSkipListSet 还解决了保持集合元素有序的问题,在许多应用场景中,需要一个能够按照某种顺序(自然顺序或自定义顺序)存储元素的集合,ConcurrentSkipListSet 实现了 SortedSet 接口,这意味着它可以根据元素的自然顺序或者通过构造函数提供的 Comparator 对象来对元素进行排序。

总结下来就是,ConcurrentSkipListSet 类主要用来解决在多线程环境下安全、高效地操作有序集合的问题,它结合了跳表的高效查找特性和并发控制机制,使得它成为处理需要高并发访问和有序性的数据集的理想选择,无论是在需要实时更新的排行榜系统、并发处理大量有序数据的服务器应用程序,还是在需要保持数据一致性和有序性的其他多线程场景中,ConcurrentSkipListSet 都能提供强大且有力的支持。

代码案例

下面是一个简单的Java代码,演示了如何使用ConcurrentSkipListSet类,这个示例中,将创建一个ConcurrentSkipListSet实例,并向其中添加一些整数,然后,将启动几个线程来并发地访问和修改这个集合,最后输出集合的内容,如下代码:

import java.util.concurrent.ConcurrentSkipListSet;  

public class ConcurrentSkipListSetExample {
   
     

    public static void main(String[] args) throws InterruptedException {
   
     
        // 创建一个ConcurrentSkipListSet实例,它将按照自然顺序对元素进行排序  
        ConcurrentSkipListSet<Integer> set = new ConcurrentSkipListSet<>();  

        // 向集合中添加一些初始元素  
        set.add(3);  
        set.add(1);  
        set.add(2);  
        System.out.println("Initial set: " + set); // 输出初始集合,应该是有序的:[1, 2, 3]  

        // 定义一个线程任务,用于向集合中添加元素  
        Runnable adderTask = () -> {
   
     
            for (int i = 4; i <= 6; i++) {
   
     
                set.add(i); // 尝试添加元素4, 5, 6  
                try {
   
     
                    // 为了演示效果,让线程稍微休眠一下  
                    Thread.sleep(100);  
                } catch (InterruptedException e) {
   
     
                    Thread.currentThread().interrupt();  
                }  
            }  
        };  

        // 定义一个线程任务,用于从集合中删除元素  
        Runnable removerTask = () -> {
   
     
            for (int i = 1; i <= 3; i++) {
   
     
                set.remove(i); // 尝试删除元素1, 2, 3  
                try {
   
     
                    // 为了演示效果,让线程稍微休眠一下  
                    Thread.sleep(150);  
                } catch (InterruptedException e) {
   
     
                    Thread.currentThread().interrupt();  
                }  
            }  
        };  

        // 启动线程来并发地修改集合  
        Thread adderThread = new Thread(adderTask);  
        Thread removerThread = new Thread(removerTask);  
        adderThread.start();  
        removerThread.start();  

        // 等待线程执行完成  
        adderThread.join();  
        removerThread.join();  

        // 输出最终的集合内容  
        System.out.println("Final set: " + set); // 输出结果取决于线程的执行顺序,但集合仍然是有序的  
    }  
}

在上面代码中,创建了一个ConcurrentSkipListSet实例,并初始化了三个元素(1, 2, 3),然后,定义了两个Runnable任务:一个用于向集合中添加元素(4, 5, 6),另一个用于从集合中删除元素(1, 2, 3),这两个任务将在不同的线程中并发执行。

核心API

ConcurrentSkipListSet 类实现了 SortedSet 接口,内部基于 Skip List(跳表)数据结构,并提供了高效的并发访问,这个类能够保证元素的有序性,并且允许并发修改。以下是 ConcurrentSkipListSet 类中一些重要方法的含义:

1、构造方法

  • ConcurrentSkipListSet(): 创建一个新的空集合,根据元素的自然排序进行排序。
  • ConcurrentSkipListSet(Comparator<? super E> comparator): 创建一个新的空集合,根据提供的比较器进行排序。

2、添加元素

  • boolean add(E e): 将指定的元素插入此集合(如果尚未存在)。
  • boolean addAll(Collection<? extends E> c): 将指定集合中的所有元素插入此集合。

3、删除元素

  • boolean remove(Object o): 从此集合中移除指定元素的单个实例(如果存在)。
  • boolean removeAll(Collection<?> c): 移除此集合中那些也包含在指定集合中的所有元素。
  • void clear(): 移除此集合中的所有元素。

4、查询元素

  • boolean contains(Object o): 如果此集合包含指定的元素,则返回 true
  • boolean containsAll(Collection<?> c): 如果此集合包含指定集合中的所有元素,则返回 true

5、获取视图

  • Iterator<E> iterator(): 返回在此集合的元素上进行迭代的迭代器。
  • NavigableSet<E> descendingSet(): 返回此集合中所有元素的逆序视图。
  • Iterator<E> descendingIterator(): 返回在此集合的元素上以逆序进行迭代的迭代器。

6、获取子集或超集

  • NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive): 返回此集合的部分视图,其元素范围从 fromElementtoElement
  • NavigableSet<E> headSet(E toElement, boolean inclusive): 返回此集合的部分视图,其元素都小于(或等于,如果 inclusivetruetoElement
  • NavigableSet<E> tailSet(E fromElement, boolean inclusive): 返回此集合的部分视图,其元素都大于(或等于,如果 inclusivetruefromElement

7、其它核心方法

  • E first(): 返回当前具有最小元素的视图关系的第一个(最小)元素。
  • E last(): 返回当前具有最大元素的视图关系的最后一个(最大)元素。
  • E lower(E e): 返回此集合中小于指定元素的最大元素;如果不存在这样的元素,则返回 null
  • E floor(E e): 返回此集合中小于等于指定元素的最大元素;如果不存在这样的元素,则返回 null
  • E ceiling(E e): 返回此集合中大于等于指定元素的最小元素;如果不存在这样的元素,则返回 null
  • E higher(E e): 返回此集合中大于指定元素的最小元素;如果不存在这样的元素,则返回 null
  • int size(): 返回此集合中的元素数量(此操作可能很耗时,因为它可能要遍历整个集合)。
  • boolean isEmpty(): 如果此集合不包含任何元素,则返回 true

注意:由于 ConcurrentSkipListSet 是为并发设计的,因此上述方法中的大多数都提供了线程安全性的保证,可以在多线程环境中安全使用,然而,size() 方法可能需要遍历整个数据结构来确定元素数量,因此在并发环境中使用时可能不是很高效。

核心总结

Java并发基础:ConcurrentSkipListSet全面解析! - 程序员古德

ConcurrentSkipListSet类是一个强大的并发有序集合实现,它提供了高效的插入、删除和查找操作,其优点在于出色的并发性能,能够在多线程环境下保持数据的一致性和有序性,适用于需要高并发访问和修改的场景,并且,由于它基于跳表数据结构,因此在数据量较大时仍能保持良好的性能。

ConcurrentSkipListSet类也存在一些缺点,比如,相比于非并发集合,它的内存消耗较大,这就导致了在某些极端情况下,跳表的维护可能会带来额外的开销。

在技术方案选择时,如果应用需要处理大量并发读写操作,并且对数据的有序性有较高要求,那么推荐使用ConcurrentSkipListSet

END!
END!
END!

往期回顾

精品文章

Java并发基础:SynchronousQueue全面解析!

Java并发基础:ConcurrentLinkedQueue全面解析!

Java并发基础:Exchanger全面解析!

Java并发基础:ConcurrentLinkedDeque全面解析!

Java并发基础:PriorityBlockingQueue全面解析!

精彩视频

相关文章
|
1月前
|
Java 大数据 Go
从混沌到秩序:Java共享内存模型如何通过显式约束驯服并发?
并发编程旨在混乱中建立秩序。本文对比Java共享内存模型与Golang消息传递模型,剖析显式同步与隐式因果的哲学差异,揭示happens-before等机制如何保障内存可见性与数据一致性,展现两大范式的深层分野。(238字)
63 4
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
1月前
|
存储 安全 Java
《数据之美》:Java集合框架全景解析
Java集合框架是数据管理的核心工具,涵盖List、Set、Map等体系,提供丰富接口与实现类,支持高效的数据操作与算法处理。
|
1月前
|
缓存 安全 Java
如何理解Java中的并发?
Java并发指多任务交替执行,提升资源利用率与响应速度。通过线程实现,涉及线程安全、可见性、原子性等问题,需用synchronized、volatile、线程池及并发工具类解决,是高并发系统开发的关键基础。(238字)
197 4
|
2月前
|
Java 开发者
Java 函数式编程全解析:静态方法引用、实例方法引用、特定类型方法引用与构造器引用实战教程
本文介绍Java 8函数式编程中的四种方法引用:静态、实例、特定类型及构造器引用,通过简洁示例演示其用法,帮助开发者提升代码可读性与简洁性。
|
2月前
|
Java 开发者
Java并发编程:CountDownLatch实战解析
Java并发编程:CountDownLatch实战解析
437 100
|
2月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
723 0
|
2月前
|
安全 Java API
Java SE 与 Java EE 区别解析及应用场景对比
在Java编程世界中,Java SE(Java Standard Edition)和Java EE(Java Enterprise Edition)是两个重要的平台版本,它们各自有着独特的定位和应用场景。理解它们之间的差异,对于开发者选择合适的技术栈进行项目开发至关重要。
395 1
|
2月前
|
Java
Java的CAS机制深度解析
CAS(Compare-And-Swap)是并发编程中的原子操作,用于实现多线程环境下的无锁数据同步。它通过比较内存值与预期值,决定是否更新值,从而避免锁的使用。CAS广泛应用于Java的原子类和并发包中,如AtomicInteger和ConcurrentHashMap,提升了并发性能。尽管CAS具有高性能、无死锁等优点,但也存在ABA问题、循环开销大及仅支持单变量原子操作等缺点。合理使用CAS,结合实际场景选择同步机制,能有效提升程序性能。
|
3月前
|
存储 缓存 Java
Java数组全解析:一维、多维与内存模型
本文深入解析Java数组的内存布局与操作技巧,涵盖一维及多维数组的声明、初始化、内存模型,以及数组常见陷阱和性能优化。通过图文结合的方式帮助开发者彻底理解数组本质,并提供Arrays工具类的实用方法与面试高频问题解析,助你掌握数组核心知识,避免常见错误。

推荐镜像

更多
  • DNS
  • 下一篇
    oss云网关配置