Java并发基础:PriorityBlockingQueue全面解析!

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: PriorityBlockingQueue类能高效处理优先级任务,确保高优先级任务优先执行,它内部基于优先级堆实现,保证了元素的有序性,同时,作为BlockingQueue接口的实现,它提供了线程安全的队列操作,适用于多线程环境下的任务调度与资源管理,简洁而强大的API使得开发者能轻松应对复杂的并发场景。

Java并发基础:PriorityBlockingQueue全面解析! - 程序员古德

内容概要

PriorityBlockingQueue类能高效处理优先级任务,确保高优先级任务优先执行,它内部基于优先级堆实现,保证了元素的有序性,同时,作为BlockingQueue接口的实现,它提供了线程安全的队列操作,适用于多线程环境下的任务调度与资源管理,简洁而强大的API使得开发者能轻松应对复杂的并发场景。

核心概念

PriorityBlockingQueue 实现了一个线程安全的优先级队列,在这个队列中,元素根据它们的自然排序(如果它们实现了 Comparable 接口)或者传递给队列构造器的 Comparator 进行排序。

比如有一个打印服务,在这个系统中,用户可以提交打印任务,每个任务都有一个优先级,高优先级的任务(比如紧急的文档)应该比低优先级的任务(如日常报告)更快地被处理。

在这个场景中,PriorityBlockingQueue 可以用来存储和管理待处理的打印任务,每当一个新的打印任务被提交时,它就被添加到队列中,由于 PriorityBlockingQueue 是一个优先级队列,所以高优先级的任务会自动排在队列的前面。

打印服务的工作线程可以从队列中取出任务来处理,由于队列是线程安全的,多个工作线程可以同时从队列中安全地取出任务,而且,由于队列会根据优先级对任务进行排序,所以工作线程总是先处理优先级最高的任务。

PriorityBlockingQueue 主要解决以下类似场景的问题:

  1. 并发访问:在多线程环境中,PriorityBlockingQueue 提供了安全的并发访问机制,多个线程可以同时向队列中添加或检索元素,而无需担心数据的不一致性或损坏。
  2. 优先级排序:队列中的元素根据其自然排序顺序或者传递给队列构造函数的比较器(Comparator)来排序,这使得在处理任务或消息时,可以确保首先处理优先级最高的项。
  3. 资源分配:在资源有限的情况下,PriorityBlockingQueue 可以帮助确定哪些任务或请求应该首先获得资源,通过为不同的任务设置不同的优先级,系统可以优先处理更重要的任务。
  4. 任务调度:在任务调度系统中,PriorityBlockingQueue 可用于管理待执行的任务,工作线程可以从队列中检索并执行优先级最高的任务,从而确保任务按照优先级顺序执行。
  5. 缓冲和流量控制:在高负载情况下,PriorityBlockingQueue 可以作为缓冲区来存储待处理的项目,并通过其阻塞特性来控制流量,当队列满时,尝试添加元素的线程将被阻塞,直到队列中有可用空间;同样地,当队列为空时,尝试检索元素的线程也将被阻塞,直到有元素可用。
  6. 延迟执行:虽然 PriorityBlockingQueue 本身不直接支持延迟执行,但可以通过结合使用优先级和自定义的比较器来实现类似的效果,例如,可以将任务的执行时间作为优先级的一部分,并确保在执行时间之前任务不会被检索出来。

代码案例

下面是一个简单例子,演示如何使用PriorityBlockingQueue类,这个例子中,创建了一个优先级阻塞队列,用于存储和检索Task对象,这些对象根据它们的优先级进行排序,client代码会向队列中添加任务,并从队列中检索并处理优先级最高的任务,如下:

import java.util.concurrent.PriorityBlockingQueue;  

// 任务类,实现了Comparable接口以便能够根据优先级进行排序  
class Task implements Comparable<Task> {
   
     
    private int priority;  
    private String description;  

    public Task(int priority, String description) {
   
     
        this.priority = priority;  
        this.description = description;  
    }  

    public int getPriority() {
   
     
        return priority;  
    }  

    public String getDescription() {
   
     
        return description;  
    }  

    // 根据优先级对任务进行排序,优先级高的任务排在前面  
    @Override  
    public int compareTo(Task other) {
   
     
        // 注意:这里使用Integer.compare进行比较,以正确处理负数优先级  
        return Integer.compare(other.priority, this.priority); // 降序排列  
    }  

    @Override  
    public String toString() {
   
     
        return "Task{" + "priority=" + priority + ", description='" + description + "'}";  
    }  
}  

// 客户端代码,演示如何使用PriorityBlockingQueue  
public class PriorityBlockingQueueExample {
   
     

    public static void main(String[] args) throws InterruptedException {
   
     
        // 创建一个优先级阻塞队列  
        PriorityBlockingQueue<Task> queue = new PriorityBlockingQueue<>();  

        // 向队列中添加任务  
        queue.put(new Task(3, "Low priority task"));  
        queue.put(new Task(5, "Medium priority task"));  
        queue.put(new Task(1, "Very low priority task"));  
        queue.put(new Task(7, "High priority task"));  

        // 从队列中检索并处理任务,直到队列为空  
        while (!queue.isEmpty()) {
   
     
            // take方法会阻塞,直到队列中有元素可用  
            Task task = queue.take();  
            System.out.println("Processing task: " + task);  
        }  
    }  
}

在上面的代码中,创建了一个PriorityBlockingQueue实例,并向其中添加了四个具有不同优先级的任务,然后,使用一个循环从队列中检索并处理任务,直到队列为空,由于PriorityBlockingQueue是一个优先级队列,因此当从队列中检索任务时,优先级最高的任务总是首先被取出。

compareTo方法中,使用Integer.compare(other.priority, this.priority)来对任务进行降序排列,因此,优先级数值越高的任务将被视为优先级越高,并排在队列的前面,如果想要升序排列(即优先级数值越低的任务排在前面),可以简单地调换other.prioritythis.priority的位置。

上面代码输出如下类似内容:

Processing task: Task{
   
   priority=7, description='High priority task'}  
Processing task: Task{
   
   priority=5, description='Medium priority task'}  
Processing task: Task{
   
   priority=3, description='Low priority task'}  
Processing task: Task{
   
   priority=1, description='Very low priority task'}

核心API

PriorityBlockingQueue 实现了 BlockingQueue 接口并使用优先级堆对元素进行排序,以下是 PriorityBlockingQueue 类中一些常用方法的含义:

1、构造方法

  • PriorityBlockingQueue(): 创建一个具有默认初始容量的 PriorityBlockingQueue
  • PriorityBlockingQueue(int initialCapacity): 创建一个具有指定初始容量的 PriorityBlockingQueue
  • PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator): 创建一个具有指定初始容量,并根据指定的比较器对元素进行排序的 PriorityBlockingQueue

2、插入方法

  • add(E e): 将指定的元素插入到此队列中,如果成功,则返回 true(由于队列没有容量限制,因此该方法总是返回 true,除非元素为 null)。
  • offer(E e): 将指定的元素插入到此队列中,并立即返回。该方法等效于 add(E e)
  • put(E e) throws InterruptedException: 将指定的元素插入到此队列中,等待必要的空间变得可用,如果当前线程被中断,则抛出 InterruptedException

3、移除方法

  • remove(Object o): 移除队列中首次出现的指定元素(如果存在)。
  • poll(): 检索并移除此队列的头,如果此队列为空,则返回 null
  • take() throws InterruptedException: 检索并移除此队列的头,等待元素变得可用,如果当前线程被中断,则抛出 InterruptedException

4、检查方法

  • peek(): 检索,但不移除此队列的头,如果此队列为空,则返回 null
  • element() throws NoSuchElementException: 检索,但不移除此队列的头,如果此队列为空,则抛出 NoSuchElementException

5、其他方法

  • size(): 返回队列中的元素数量。
  • isEmpty(): 如果队列为空,则返回 true
  • clear(): 移除此队列中的所有元素。
  • contains(Object o): 如果队列包含指定的元素,则返回 true
  • remainingCapacity(): 由于 PriorityBlockingQueue 没有容量限制,此方法始终返回 Integer.MAX_VALUE
  • drainTo(Collection<? super E> c): 移除此队列中所有可用的元素,并将它们添加到给定的集合中。
  • drainTo(Collection<? super E> c, int maxElements): 移除此队列中最多给定数量的可用元素,并将它们添加到给定的集合中。
  • toArray(): 返回包含队列中所有元素的数组。
  • iterator(): 返回在此队列元素上进行迭代的迭代器。注意,由于并发修改的可能性,迭代器的行为是弱一致的。
  • comparator(): 返回用于对此队列中的元素进行排序的比较器,如果此队列按其自然顺序排序,则返回 null

核心总结

Java并发基础:PriorityBlockingQueue全面解析! - 程序员古德

PriorityBlockingQueue类允许开发者存储元素并根据其自然排序或者提供的Comparator进行排序,其优点在于它能高效地处理需要优先级调度的任务,确保最高优先级的任务总是优先被处理,它的缺点是在高并发场景下,由于线程间的竞争,性能可能会受到影响,此外,虽然它提供了并发安全性,但在迭代过程中并不保证元素的顺序一致性。

关注我,每天学习互联网编程技术 - 程序员古德

END!

往期回顾

Java并发基础:DelayQueue全面解析!

Java并发基础:LinkedBlockingDeque全面解析!

Java并发基础:LinkedTransferQueue全面解析!

Java并发基础:LinkedBlockingQueue全面解析!

Java并发基础:Deque接口和Queue接口的区别?

相关文章
|
7天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
22 2
|
11天前
|
Java
轻松上手Java字节码编辑:IDEA插件VisualClassBytes全方位解析
本插件VisualClassBytes可修改class字节码,包括class信息、字段信息、内部类,常量池和方法等。
60 6
|
8天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
20 4
|
11天前
|
Java 编译器 数据库连接
Java中的异常处理机制深度解析####
本文深入探讨了Java编程语言中异常处理机制的核心原理、类型及其最佳实践,旨在帮助开发者更好地理解和应用这一关键特性。通过实例分析,揭示了try-catch-finally结构的重要性,以及如何利用自定义异常提升代码的健壮性和可读性。文章还讨论了异常处理在大型项目中的最佳实践,为提高软件质量提供指导。 ####
|
12天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
21天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
8天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
28 9
|
11天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
8天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
11天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
26 3

推荐镜像

更多