m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面

简介: m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
2.1、Faster-RCNN网络介绍

     Faster-RCNN是一种流行的深度学习目标检测算法,它通过使用Region Proposal Network (RPN) 来实现高效且准确的目标检测。相比于其它的目标检测算法,例如R-CNN和SPP-Net,Faster-RCNN具有更高的效率和准确性。

2.2、Faster-RCNN工作原理

Faster-RCNN由两个主要部分组成:RPN和RCNN。

    RPN:该网络通过滑动小窗口在图像上进行扫描,并预测窗口内可能存在目标的区域(称为“提议”)。它通过使用一种名为“高斯混合模型”的方法对窗口中的像素进行分类,以确定是否有可能存在目标。对于每个可能的区域,RPN都会生成一组坐标,这组坐标表示该区域在原始图像上的位置。
    RCNN:该网络接收RPN生成的提议,并使用卷积神经网络(CNN)对每个提议进行特征提取。然后,这些特征被送入一个全连接层,以生成每个提议的分类(即目标或背景)和边界框(即目标在图像中的位置)。

2.3 Faster-RCNN步骤

    对于每个滑动窗口,RPN使用高斯混合模型对窗口内的像素进行分类,以确定是否有可能存在目标。这通常涉及计算每个像素与高斯分布的匹配程度,并根据匹配程度对像素进行分类。
   RCNN接收RPN生成的提议,并使用卷积神经网络对其进行特征提取。这通常涉及一系列卷积层、ReLU激活函数和池化层,以从图像中提取有用的特征。
   这些特征被送入全连接层,以生成每个提议的分类和边界框。全连接层通常使用softmax函数对分类进行归一化处理,以生成每个提议属于目标或背景的概率。同时,全连接层也会输出边界框的坐标,以指示目标在图像中的位置。


   基于Faster-RCNN网络的人员迭代检测系统通过结合RPN和Fast R-CNN检测器,实现了高效和准确的人员检测。该系统可以应用于各种场景,如监控、人群计数和安全应用等。通过迭代检测,可以进一步提高检测精度,特别是在复杂和拥挤的环境中。

3.MATLAB核心程序
```% 随机打乱数据集并分割为训练集、验证集和测试集
Ridx = randperm(height(vehicleDataset));
idx = floor(0.85 * height(vehicleDataset));
train_Idx = 1:idx;
train_Tbl = vehicleDataset(Ridx(train_Idx),:);

test_Idx = idx+1 : idx + 1 + floor(0.1 * length(Ridx) );
test_Tbl = vehicleDataset(Ridx(test_Idx),:);

test_Idx0 = test_Idx(end)+1 : length(Ridx);
test_Tbl0 = vehicleDataset(Ridx(test_Idx0),:);
% 创建图像数据存储器
imdsTrain = imageDatastore(train_Tbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(train_Tbl(:,'man'));
imdsValidation = imageDatastore(test_Tbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(test_Tbl(:,'man'));
imdsTest = imageDatastore(test_Tbl0{:,'imageFilename'});
bldsTest = boxLabelDatastore(test_Tbl0(:,'man'));
% 创建训练、验证和测试数据
trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

% 预处理训练数据
data = read(trainingData);
In_layer_Size = [224 224 3];

% 估计锚框
pre_train_data = transform(trainingData, @(data)preprocessData(data,In_layer_Size));
NAnchor = 3;
NBoxes = estimateAnchorBoxes(pre_train_data,NAnchor);
numClasses = width(vehicleDataset)-1;
% 创建Faster R-CNN网络
lgraph = fasterRCNNLayers(In_layer_Size,numClasses,NBoxes,Initial_nn,featureLayer);
% 数据增强
aug_train_data = transform(trainingData,@augmentData);
augmentedData = cell(4,1);

% 预处理数据并显示标注
trainingData = transform(aug_train_data,@(data)preprocessData(data,In_layer_Size));
validationData = transform(validationData,@(data)preprocessData(data,In_layer_Size));
data = read(trainingData);
I = data{1};
bbox = data{2};

% 设置训练参数
options = trainingOptions('sgdm',...
'MaxEpochs',240,...
'MiniBatchSize',2,...
'InitialLearnRate',3e-5,...
'CheckpointPath',tempdir,...
'ValidationData',validationData);
% 训练Faster R-CNN目标检测器
[detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options,'NegativeOverlapRange',[0 0.15],'PositiveOverlapRange',[0.15 1]);
save net015.mat detector info
```

相关文章
|
13天前
|
Ubuntu Windows
【Ubuntu/Arm】Ubuntu 系统如何链接有线网络(非虚拟机)?
【Ubuntu/Arm】Ubuntu 系统如何链接有线网络(非虚拟机)?
|
29天前
|
机器学习/深度学习 数据采集 人工智能
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
m基于深度学习网络的手势识别系统matlab仿真,包含GUI界面
37 0
|
24天前
|
存储 Shell Linux
【Shell 命令集合 网络通讯 】Linux 显示Unix-to-Unix Copy (UUCP) 系统的状态信息 uustat命令 使用指南
【Shell 命令集合 网络通讯 】Linux 显示Unix-to-Unix Copy (UUCP) 系统的状态信息 uustat命令 使用指南
26 0
|
24天前
|
Shell Linux C语言
【Shell 命令集合 网络通讯 】Linux 查看系统中的UUCP日志文件 uulog命令 使用指南
【Shell 命令集合 网络通讯 】Linux 查看系统中的UUCP日志文件 uulog命令 使用指南
28 0
|
4天前
|
存储 算法 Linux
【实战项目】网络编程:在Linux环境下基于opencv和socket的人脸识别系统--C++实现
【实战项目】网络编程:在Linux环境下基于opencv和socket的人脸识别系统--C++实现
17 6
|
2天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
273 9
|
5天前
|
JavaScript Java 测试技术
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
25 0
基于Java的网络类课程思政学习系统的设计与实现(源码+lw+部署文档+讲解等)
|
8天前
|
机器学习/深度学习 人工智能 运维
构建未来:AI驱动的自适应网络安全防御系统
【4月更文挑战第7天】 在数字时代的浪潮中,网络安全已成为维系信息完整性、保障用户隐私和确保商业连续性的关键。传统的安全防御策略,受限于其静态性质和对新型威胁的响应迟缓,已难以满足日益增长的安全需求。本文将探讨如何利用人工智能(AI)技术打造一个自适应的网络安全防御系统,该系统能够实时分析网络流量,自动识别并响应未知威胁,从而提供更为强大和灵活的保护机制。通过深入剖析AI算法的核心原理及其在网络安全中的应用,我们将展望一个由AI赋能的、更加智能和安全的网络环境。
25 0
|
20天前
|
存储 Unix Linux
深入理解 Linux 系统下的关键网络接口和函数,gethostent,getaddrinfo,getnameinfo
深入理解 Linux 系统下的关键网络接口和函数,gethostent,getaddrinfo,getnameinfo
13 0
|
24天前
|
安全 Unix Shell
【Shell 命令集合 网络通讯 】Linux 在不同的系统之间执行远程命令 uux 命令 使用指南
【Shell 命令集合 网络通讯 】Linux 在不同的系统之间执行远程命令 uux 命令 使用指南
26 0