Google Earth Engine(GEE)——reducer中进行array数组的获取和分析

简介: Google Earth Engine(GEE)——reducer中进行array数组的获取和分析

本文就是reducer中进行array数组的获取,以便获取我们想要的最大最小值。这里我们需要知道几个函数:

ee.Array(values, pixelType)

Returns an array with the given coordinates.

返回具有给定坐标的数组。

Arguments:

values (Object):

An existing array to cast, or a number/list of numbers/nested list of numbers of any depth to create an array from. For nested lists, all inner arrays at the same depth must have the same length, and numbers may only be present at the deepest level.

值(对象):

要转换的现有数组,或要从中创建数组的任意深度的数字/数字列表/嵌套数字列表。对于嵌套列表,相同深度的所有内部数组必须具有相同的长度,并且数字只能出现在最深层次。

pixelType (PixelType, default: null):

The type of each number in the values argument. If the pixel type is not provided, it will be inferred from the numbers in 'values'. If there aren't any numbers in 'values', this type must be provided.

像素类型(像素类型,

相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
4778 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
4月前
|
数据采集 XML 监控
Google Search Console 做SEO分析之“已发现未编入” 与 “已抓取未编入” 有什么区别?
在 Google Search Console (GSC) 中,“已发现 - 尚未编入索引”(Discovered - currently not indexed) 和 “已抓取 - 尚未编入索引”(Crawled - currently not indexed) 是两种不同的状态,如果你的站点也有这两种状态就需要注意优化了。
187 0
|
9月前
|
机器学习/深度学习 人工智能 JSON
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
431 19
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
|
机器学习/深度学习 自然语言处理 对象存储
[wordpiece]论文分析:Google’s Neural Machine Translation System
[wordpiece]论文分析:Google’s Neural Machine Translation System
229 1
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1149 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
机器学习/深度学习 数据采集 数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
|
数据可视化 搜索推荐 数据挖掘
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
251 0
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
362 0

推荐镜像

更多