Google Earth Engine(GEE)扩展——ee-polyfill JavaScript 方法 (ES6+)

简介: Google Earth Engine(GEE)扩展——ee-polyfill JavaScript 方法 (ES6+)

Polyfill 包括:

数组、日期、元素、函数、数学、数字、字符串、Uint8Array 和窗口

NPM

⚠️我们在 NPM 中没有任何包!

数组填充:

Array.from;
Array.isArray;
Array.of;
Array.prototype.at;
Array.prototype.copyWithin;
Array.prototype.entries;
Array.prototype.every;
Array.prototype.fill;
Array.prototype.filter;
Array.prototype.find;
Array.prototype.findIndex;
Array.prototype.flat;
Array.prototype.flatMap;
Array.prototype.forEach;
Array.prototype.includes;
Array.prototype.indexOf;
Array.prototype.keys;
Array.prototype.lastIndexOf;
Array.prototype.map;
Array.prototype.reduce;
Array.prototype.reduceRight;
Array.prototype.some;
Array.prototype.toLocaleString;
Array.prototype.values;

日期 Polyfill:

Date.prototype.toISOString;

函数填充:

Function.prototype.name;

数学填充:


相关文章
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
3382 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
人工智能 Java API
Google Gemini API 接口调用方法
Google 最近发布的 Gemini 1.0 AI 模型通过其升级版,Gemini,标志着公司迄今为止最为强大和多功能的人工智能技术的突破。
|
3月前
|
机器学习/深度学习 人工智能 JSON
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
大型语言模型(LLM)的发展迅速,从简单对话系统进化到能执行复杂任务的先进模型。然而,这些模型的规模和计算需求呈指数级增长,给学术界和工业界带来了挑战。为解决这一问题,知识蒸馏技术应运而生,旨在将大型模型的知识转移给更小、更易管理的学生模型。Google Research 提出的“Distilling Step-by-Step”方法不仅减小了模型规模,还通过提取推理过程使学生模型在某些任务上超越教师模型。该方法通过多任务学习框架,训练学生模型同时预测标签和生成推理过程,从而实现更高效、更智能的小型化模型。这为资源有限的研究者和开发者提供了新的解决方案,推动了AI技术的普及与应用。
202 19
知识蒸馏方法探究:Google Distilling Step-by-Step 论文深度分析
|
8月前
|
SQL 监控 大数据
通过Google Dataflow,我们能够构建一个高效、可扩展且易于维护的实时数据处理系统
【9月更文挑战第7天】随着大数据时代的到来,企业对高效数据处理的需求日益增加,特别是在实时分析和事件驱动应用中。Google Dataflow作为Google Cloud Platform的一项服务,凭借其灵活、可扩展的特点,成为实时大数据处理的首选。本文将介绍Dataflow的基本概念、优势,并通过一个电商日志分析的实际案例和示例代码,展示如何构建高效的数据处理管道。Dataflow不仅支持自动扩展和高可用性,还提供了多种编程语言支持和与GCP其他服务的紧密集成,简化了整个数据处理流程。通过Dataflow,企业可以快速响应业务需求,优化用户体验。
226 3
|
9月前
|
SQL 监控 大数据
"解锁实时大数据处理新境界:Google Dataflow——构建高效、可扩展的实时数据管道实践"
【8月更文挑战第10天】随着大数据时代的发展,企业急需高效处理数据以实现即时响应。Google Dataflow作为Google Cloud Platform的强大服务,提供了一个完全托管的流处理与批处理方案。它采用Apache Beam编程模型,支持自动扩展、高可用性,并能与GCP服务无缝集成。例如,电商平台可通过Dataflow实时分析用户行为日志:首先利用Pub/Sub收集数据;接着构建管道处理并分析这些日志;最后将结果输出至BigQuery。Dataflow因此成为构建实时数据处理系统的理想选择,助力企业快速响应业务需求。
452 6
|
11月前
|
人工智能
[AI Google] 三种新方法利用 Gemini 提高 Google Workspace 的生产力
Workspace 侧边栏中的 Gemini 现在将使用 Gemini 1.5 Pro,新的 Gemini for Workspace 功能即将登陆 Gmail 移动应用,等等。
[AI Google] 三种新方法利用 Gemini 提高 Google Workspace 的生产力
|
12月前
|
人工智能 监控 搜索推荐
[AI Google] 如何通过 LearnLM 扩展生成式 AI 的好奇心和理解力
LearnLM 是 Google 新推出的一系列为学习而优化的模型,通过生成式 AI 增强教育体验,使学习变得更加有趣和个性化。
[AI Google] 如何通过 LearnLM 扩展生成式 AI 的好奇心和理解力
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
919 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
163 0
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
250 0