YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)

简介: YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)

一、本文介绍

本文给大家带来的改进机制是实现级联群体注意力机制CascadedGroupAttention,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量,亲测在我的25个类别的数据上,大部分的类别均有一定的涨点效果,仅有部分的类别保持不变,同时给该注意力机制含有二次创新的机会。

欢迎大家订阅我的专栏一起学习YOLO!


image.png

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、 CascadedGroupAttention的基本原理


image.png


Cascaded Group Attention (CGA) 是在文章 "EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention" 中提出的一种新型注意力机制。其核心思想是增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量。

具体来说,CGA 将输入特征分成不同的部分,每部分输入到一个注意力头。每个头计算其自注意力映射,然后将所有头的输出级联起来,并通过一个线性层将它们投影回输入的维度。通过这样的方式,CGA 在不增加额外参数的情况下提高了模型的计算效率。另外,通过串联的方式,每个头的输出都会添加到下一个头的输入中,从而逐步精化特征表示。

Cascaded Group Attention 的优点包括:

1. 提高了注意力图的多样性。

2. 减少了计算冗余,因为它减少了 QKV 层中输入和输出通道的数量。

3. 增加了网络深度,从而进一步提高了模型容量,同时只增加了很小的延迟开销,因为每个头的 QK 通道维度较小。

image.png

这张图描绘了 "EfficientViT" 模型中 "Cascaded Group Attention" (CGA) 模块的架构。

CGA模块位于图中的(c)部分,可以看到它的作用是处理输入特征,并提供分级的注意力机制。在这个模块中,输入首先被分割成多个部分,每个部分对应一个注意力头。每个头独立地计算其自注意力,并产生一个输出。然后,所有头的输出被级联(concatenate)在一起,通过一个线性投影层形成最终的输出。这种设计允许模型在不同的层次上捕捉特征,通过级联增强了特征之间的交互,同时提高了计算效率。

级联组注意力的关键点在于每个注意力头只关注输入的一部分,然后把所有头的注意力合并起来,来获取一个全面的特征表示。这样做的好处是减少了计算重复并增加了注意力的多样性,因为不同的头可能会关注输入的不同方面。这种方法提高了模型的内存和计算效率,同时保持或增强模型的性能。

目录
相关文章
|
5月前
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
692 0
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合
【YOLOv8改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 注意力机制 | 添加适用于遥感图像的LSKblock注意力——【二次创新+完整代码】
遥感目标检测的研究主要集中在改进方向边界框的表示上,而忽略了遥感场景中独特的先验知识。 这类先验知识对于准确检测微小目标至关重要,因为这些目标往往需要更大的上下文信息才能被正确识别。提出的 LSKNet 可以动态调整其大的空间感受野,以更好地模拟不同目标的距离上下文,从而提高遥感目标检测的精度。 LSKNet 是第一个在遥感目标检测中探索大选择性核机制的方法。
|
6月前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】CoordAttention: 用于移动端的高效坐标注意力机制
YOLOv10专栏探讨了将位置信息融入通道注意力的创新方法,提出“坐标注意力”机制,改善移动网络性能。该机制通过两个1D特征编码捕捉空间依赖并保持位置细节,生成增强对象表示的注意力图。简单易整合到现有网络如MobileNet,几乎无额外计算成本,且在ImageNet及目标检测等任务中表现优越。实现代码展示了CoordAtt模块的工作流程。更多详情和配置见链接。
|
6月前
|
机器学习/深度学习
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 注意力机制 | 添加全局注意力机制 GcNet【附代码+小白必备】
本文介绍了如何在YOLOv8中集成GcNet,以增强网络对全局上下文的捕获能力。GcNet通过全局上下文模块、通道和空间注意力机制提升CNN对全局信息的利用。教程详细阐述了GcNet的原理,并提供了将GcNet添加到YOLOv8的代码实现步骤,包括创建ContextBlock类、修改init.py、task.py以及配置yaml文件。此外,还提供了训练和运行示例代码。完整代码和更多进阶内容可在作者的博客中找到。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附完整代码+小白必备】
在这个教程中,作者介绍了如何在YOLOv8图像识别模型中集成DoubleAttention模块,以提升模型捕捉长距离关系的效率。DoubleAttention通过全局和局部注意力模块捕获图像的全局和局部信息。教程详细阐述了DoubleAttention的工作原理,并提供了相应的代码实现。读者将学习到如何在YOLOv8的网络结构中添加这一组件,并给出了完整的代码示例。此外,还分享了GFLOPs的计算,以及鼓励读者尝试在不同位置添加注意力机制作为进阶练习。完整代码和更多详情可在提供的链接中获取。