YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)

简介: YOLOv5改进 | 注意力篇 | CGAttention实现级联群体注意力机制 (全网首发改进)

一、本文介绍

本文给大家带来的改进机制是实现级联群体注意力机制CascadedGroupAttention,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量,亲测在我的25个类别的数据上,大部分的类别均有一定的涨点效果,仅有部分的类别保持不变,同时给该注意力机制含有二次创新的机会。

欢迎大家订阅我的专栏一起学习YOLO!


image.png

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、 CascadedGroupAttention的基本原理


image.png


Cascaded Group Attention (CGA) 是在文章 "EfficientViT: Memory Efficient Vision Transformer with Cascaded Group Attention" 中提出的一种新型注意力机制。其核心思想是增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量。

具体来说,CGA 将输入特征分成不同的部分,每部分输入到一个注意力头。每个头计算其自注意力映射,然后将所有头的输出级联起来,并通过一个线性层将它们投影回输入的维度。通过这样的方式,CGA 在不增加额外参数的情况下提高了模型的计算效率。另外,通过串联的方式,每个头的输出都会添加到下一个头的输入中,从而逐步精化特征表示。

Cascaded Group Attention 的优点包括:

1. 提高了注意力图的多样性。

2. 减少了计算冗余,因为它减少了 QKV 层中输入和输出通道的数量。

3. 增加了网络深度,从而进一步提高了模型容量,同时只增加了很小的延迟开销,因为每个头的 QK 通道维度较小。

image.png

这张图描绘了 "EfficientViT" 模型中 "Cascaded Group Attention" (CGA) 模块的架构。

CGA模块位于图中的(c)部分,可以看到它的作用是处理输入特征,并提供分级的注意力机制。在这个模块中,输入首先被分割成多个部分,每个部分对应一个注意力头。每个头独立地计算其自注意力,并产生一个输出。然后,所有头的输出被级联(concatenate)在一起,通过一个线性投影层形成最终的输出。这种设计允许模型在不同的层次上捕捉特征,通过级联增强了特征之间的交互,同时提高了计算效率。

级联组注意力的关键点在于每个注意力头只关注输入的一部分,然后把所有头的注意力合并起来,来获取一个全面的特征表示。这样做的好处是减少了计算重复并增加了注意力的多样性,因为不同的头可能会关注输入的不同方面。这种方法提高了模型的内存和计算效率,同时保持或增强模型的性能。

目录
相关文章
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
2744 0
|
机器学习/深度学习 图计算 计算机视觉
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性
YOLO目标检测专栏探讨了Transformer在视觉任务中的效能与计算成本问题,提出EfficientViT,一种兼顾速度和准确性的模型。EfficientViT通过创新的Cascaded Group Attention(CGA)模块减少冗余,提高多样性,节省计算资源。在保持高精度的同时,与MobileNetV3-Large相比,EfficientViT在速度上有显著提升。论文和代码已公开。CGA通过特征分割和级联头部增加注意力多样性和模型容量,降低了计算负担。核心代码展示了CGA模块的实现。
|
11月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
2609 0
|
机器学习/深度学习 存储 测试技术
【YOLOv10改进-注意力机制】iRMB: 倒置残差移动块 (论文笔记+引入代码)
YOLOv10专栏介绍了融合CNN与Transformer的iRMB模块,用于轻量级模型设计。iRMB在保持高效的同时结合了局部和全局信息处理,减少了资源消耗,提升了移动端性能。在ImageNet等基准上超越SOTA,且在目标检测等任务中表现优秀。代码示例展示了iRMB的实现细节,包括自注意力机制和卷积操作的整合。更多配置信息见相关链接。
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
10月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
10月前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征本文提出了一种全局注意力机制,通过保留通道和空间信息,增强跨维度的交互,减少信息损失。该机制结合3D置换与多层感知器用于通道注意力,卷积空间注意力子模块用于空间注意力。实验结果表明,在CIFAR-100和ImageNet-1K数据集上,该方法在ResNet和MobileNet上优于多种最新注意力机制。
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
10月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力
【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力Contextual Transformer (CoT) 是一种新型的Transformer风格模块,通过3×3卷积对输入键进行上下文编码,生成静态上下文表示,并通过两个1×1卷积学习动态多头注意力矩阵,增强视觉表示能力。CoTNet将CoT块应用于ResNet架构中,替代3×3卷积,提升图像识别、目标检测和实例分割等任务的性能。源码可在GitHub获取。
【YOLOv11改进 - 注意力机制】CoTAttention:上下文转换器注意力
|
11月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17791 0