一、本文介绍
本文给大家带来的改进机制是在DynamicHead上替换DCNv3模块,其中DynamicHead的核心为DCNv2,但是今年新更新了DCNv3其作为v2的升级版效果肯定是更好的,所以我将其中的核心机制替换为DCNv3给Dyhead相当于做了一个升级,效果也比之前的普通版本要好,这个机制我认为是我个人融合的算是,先用先得全网无第二份此改进机制,同时我发布的一比一复现版本Dyhead也是收获了多个读者的反馈均有涨点效果,本文的DCNv3在我的数据上成功涨了四五个点,大家可以尝试效果比基础版本的Dyhead更好,该检测头非常适合大家用来发表论文!!
欢迎大家订阅我的专栏一起学习YOLO!
专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新
二、 DCN的框架原理
首先我们先来介绍一个大的概念DCN全称为Deformable Convolutional Networks,翻译过来就是可变形卷积的意思,其是一种用于目标检测和图像分割的卷积神经网络模块,通过引入可变形卷积操作来提升模型对目标形变的建模能力。
什么是可变形卷积?我们看下图来看一下就了解了。
上图中展示了标准卷积和可变形卷积中的采样位置。在标准卷积(a)中,采样位置按照规则的网格形式排列(绿色点)。这意味着卷积核在进行卷积操作时,会在输入特征图的规则网格位置上进行采样。
而在可变形卷积(b)中,采样位置是通过引入偏移量进行变形的(深蓝色点),并用增强的偏移量(浅蓝色箭头)进行表示。这意味着在可变形卷积中,不再局限于规则的网格位置,而是可以根据需要在输入特征图上自由地进行采样。
通过引入可变形卷积,可以推广各种变换,例如尺度变换、(异向)长宽比和旋转等变换,这在(c)和(d)中进行了特殊情况的展示。这说明可变形卷积能够更灵活地适应不同类型的变换,从而增强了模型对目标形变的建模能力。
总之,标准卷积(规则采样)在进行卷积操作时按照规则网格位置进行采样,而可变形卷积通过引入偏移量来实现非规则采样,从而在形状变换(尺度、长宽比、旋转等)方面具有更强的泛化能力。
下面是一个三维的角度来分析大家应该会看的更直观。
其中左侧的是输入特征,右侧的是输出特征,我们的卷积核大小是一个3x3的,我们将输入特征中3x3区域映射为输出特征中的1x1,问题就在于这个3x3的区域怎么选择,传统的卷积就是规则的形状,可变形卷积就是在其中加入一个偏移量,然后对于个每个点分别计算,然后改变3x3区域中每个点的选取,提取一些可能具有更丰富特征的点,从而提高检测效果。
下面我们来看一下在实际检测效果中,可变形卷积的效果,下面的图片分别为大物体、中物体、小物体检测,其中红色的部分就是我们提取出来的特征。
图中的每个图像三元组展示了三个级别的3×3可变形滤波器的采样位置(每个图像中有729个红色点),以及分别位于背景(左侧)、小物体(中间)和大物体(右侧)上的三个激活单元(绿色点)。
这个图示的目的是说明在不同的物体尺度上,可变形卷积中的采样位置如何变化。在左侧的背景图像中,可变形滤波器的采样位置主要集中在图像的背景部分。在中间的小物体图像中,采样位置的焦点开始向小物体的位置移动,并在小物体周围形成更密集的采样点。在右侧的大物体图像中,采样位置进一步扩展并覆盖整个大物体,以更好地捕捉其细节和形变。
通过这些图示,我们可以观察到可变形卷积的采样位置可以根据不同的目标尺度自适应地调整,从而在不同尺度的物体上更准确地捕捉特征。这增强了模型对于不同尺度目标的感知能力,并使其更适用于不同尺度物体的检测任务,这也是为什么开头的地方我说了本文适合于各种目标的检测对象。
上图可能可能更加直观一些。