YOLOv5改进 | 2023 | FocusedLinearAttention实现有效涨点

简介: YOLOv5改进 | 2023 | FocusedLinearAttention实现有效涨点

一、本文介绍

本文给大家带来的改进机制是Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度),旨在提高效率和表现力。其解决了两个在传统线性注意力方法中存在的问题:聚焦能力和特征多样性。这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。简言之,Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。通过本文你能够了解到:Focused Linear Attention的基本原理和框架,能够在你自己的网络结构中进行添加(需要注意的是一个FLAGFLOPs从8.9涨到了9.1)。

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、Focused Linear Attention的机制原理

image.png

2.1 Softmax和线性注意力机制的对比

image.png

上面的图片是关于比较Softmax注意力和线性注意力的差异。在这张图中,Q、K、V 分别代表查询、键和值矩阵,它们的维度为 R N×d。这里提到的几个关键点包括:

1. Softmax注意力:它需要计算查询和键之间的成对相似度,导致计算复杂度为 O(N^2 d)。这种方法在计算上是昂贵的,特别是当处理大规模数据时。

2. 线性注意力:通过适当的近似手段,线性注意力可以解耦Softmax操作,并通过先计算

image.png

)。由于在现代视觉Transformer设计中通道维度 d 通常小于标记数 N(例如,在DeiT中d=64, N=196,在Swin Transformer中d=32, N=49),线性注意力模块实际上降低了总体计算成本。

此处提出了线性注意力机制的优势(为了后面提出论文提到的注意力机制在线性注意力机制上的优化):线性注意力模块因此能够在节省计算成本的同时,享受更大的接收域和更高的吞吐量的好处。

总结:这张图片可能是在说明线性注意力如何在保持注意力机制核心功能的同时,提高计算效率,尤其是在处理大规模数据集时的优势。这种方法对于改善视觉Transformer的性能和效率具有重要意义(我下面会出将其用在RT-DETR的模型上看看效果)

2.2 Focused Linear Attention的提出

线性注意力的限制和改进: 尽管线性注意力降低了复杂度,但现有的线性注意力方法仍存在性能下降的问题,并可能因映射函数带来额外的计算开销。为了解决这些问题,作者提出了一个新颖的聚焦线性注意力(Focused Linear Attention)模块。该模块通过简单的映射函数调整查询和键的特征方向,使注意力权重更加明显。此外,还通过深度卷积(DWC)应用于原始注意力矩阵的秩恢复模块来增加特征多样性。

Focused Linear Attention(聚焦线性注意力)是一种用于视觉Transformer模型的注意力机制(但是其也可以用在我们的YOLO系列当中从而提高检测精度),旨在提高效率和表现力。它解决了传统线性注意力方法的两个主要问题:

1. 聚焦能力: 以往的线性注意力缺乏足够的聚焦能力,导致模型难以有效地关注重要特征。Focused Linear Attention通过改进的机制增强了这种聚焦能力。

2. 特征多样性: 传统方法在特征表达上缺乏多样性,影响了模型的表现力。Focused Linear Attention通过特殊的设计来增加特征的多样性和丰富性。

这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。

总结:Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。

2.3 效果对比

image.png

图片显示了多个视觉Transformer模型的性能和计算复杂度的比较。图中分为四个部分:

1. PVT: 对比了不同版本的PVT(Pyramid Vision Transformer),DeiT(Data-efficient Image Transformer),以及T2T(Tokens-to-Token ViT)的Top-1准确率和计算量(FLOPs)。

2. PVT v2: 类似地,展示了PVT v2、ConvNext、DAT(Deformable Attention Transformer)的性能对比。

3. Swin: 对比了Swin Transformer、CvT(Convolutional vision Transformer),以及CoTNet(Contextual Transformer Network)的模型。

4. CSwin: 展示了CSwin Transformer、MViTv2、CoAtNet的性能对比。

在每个图中,还包括了作者提出的FLatten版本的Transformer模型(标记为“Ours”),其在每个分类中都显示了相对较高的准确率或者在相似的FLOPs计算量下具有竞争力的准确率。

右侧的表格详细列出了不同模型的分辨率(Reso)、参数数量(#Params)、计算量(Flops)和Top-1准确率。表中突出了FLatten版本的Transformer模型在Top-1准确率上相对于原始模型的提升(括号中的百分点)。

个人总结:这张图片展示了通过改进的线性注意力模块,即FLatten模型,在保持或稍微增加计算量的前提下,提高了Transformer架构的图像识别准确率。


目录
相关文章
|
机器学习/深度学习 人工智能 测试技术
11种开源即插即用模块汇总 !!(附论文和代码)
11种开源即插即用模块汇总 !!(附论文和代码)
630 1
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
8月前
|
机器学习/深度学习
YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
1840 4
|
12月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17982 0
|
机器学习/深度学习 算法 Go
YOLOv5网络结构解析
YOLOv5网络结构解析
|
编解码 计算机视觉 网络架构
【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
|
PyTorch Serverless 算法框架/工具
YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py
YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py
4019 0
YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py
|
Python
Python中有效地使用global和globals()来管理全局变量
Python中有效地使用global和globals()来管理全局变量
332 1
|
算法 Go vr&ar
YOLOv8模型yaml结构图理解(逐层分析)
YOLOv8模型yaml结构图理解(逐层分析)
17004 0
Laplacian(拉普拉斯)边缘检测
【6月更文挑战第7天】Laplacian(拉普拉斯)边缘检测。
251 1