一、本文介绍
本文给大家带来的改进机制是CSWin Transformer,其基于Transformer架构,创新性地引入了交叉形窗口自注意力机制,用于有效地并行处理图像的水平和垂直条带,形成交叉形窗口以提高计算效率。它还提出了局部增强位置编码(LePE),更好地处理局部位置信息,我将其替换YOLOv5的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。
推荐指数:⭐⭐⭐⭐
涨点效果:⭐⭐⭐⭐
专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新
二、CSWin Transformer原理
2.1 CSWin Transformer的基本原理
CSWin Transformer基于Transformer架构,创新性地引入了交叉形窗口自注意力机制,用于有效地并行处理图像的水平和垂直条带,形成交叉形窗口以提高计算效率。它还提出了局部增强位置编码(LePE),更好地处理局部位置信息,支持任意输入分辨率,并对下游任务友好。这些创新使CSWin Transformer在视觉任务上,如图像分类和目标检测,显示出优于现有技术的性能。
CSWin Transformer 的基本原理可以总结如下:
1. 交叉形窗口自注意力:创新地采用了在水平和垂直方向上形成交叉形窗口的自注意力机制,提高了处理效率。 2. 局部增强位置编码(LePE):新颖的位置编码方案,更好地处理局部位置信息,支持任意大小的输入分辨率。 3. 下游任务友好:LePE使得CSWin Transformer尤其适用于各种后续视觉处理任务。
2.2 交叉形窗口自注意力
交叉形窗口自注意力是CSWin Transformer的核心特征之一,它通过将多头注意力分成两组来并行处理图像的水平和垂直条带。这种机制允许模型在交叉的区域内聚焦重要的特征,同时限制了全局自注意力的高计算成本。这样不仅保持了局部和全局信息的平衡,而且还提高了处理速度和效率。
下图展示了CSWin Transformer中不同自注意力机制的对比:
图解说明了CSWin Transformer如何通过在水平和垂直方向上拆分多头注意力,来并行处理形成交叉窗口结构。CSWin采用了一个创新的自注意力机制,通过将多头注意力拆分成两组来同时处理水平和垂直的条带,形成交叉形窗口。这种设计能够在计算成本和模型性能之间取得更好的平衡。图中展示了从全注意力到局部注意力的不同变体,以及CSWin特有的自注意力策略,这对于提高模型效率和精度都是至关重要的。
2.3 局部增强位置编码
局部增强位置编码(LePE)是CSWin Transformer中的一种新型位置编码机制。它改善了现有编码方案处理局部位置信息的能力。与传统位置编码不同,LePE专门设计来增强模型对于图像局部区域的感知能力,支持任意大小的输入分辨率。这使得CSWin Transformer在处理各种尺寸的输入图像时更为灵活和有效,特别适合各种视觉任务中的下游应用。
这张图展示了CSWin Transformer的整体架构和其中一个CSWin Transformer块的细节。
图中展示了交叉形窗口自注意力和局部增强位置编码这两种机制是如何集成在CSWin Transformer的不同阶段中,以及在单个Transformer块中的具体实现。这些设计共同支持了模型在进行视觉任务处理时的高效性和有效性。模型分为四个阶段,每个阶段由多个CSWin Transformer块组成,每个块包含了交叉形窗口自注意力和局部增强位置编码。随着阶段的推进,特征图的维度逐渐增大,通道数也相应增加,这允许网络逐渐捕获更复杂的特征。右侧详细描绘了一个CSWin Transformer块的内部结构,展示了MLP(多层感知机)、LN(层归一化)以及核心的交叉形窗口自注意力机制。
下面这张图对比了不同的位置编码机制,如APE、CPE、RPE以及CSWin Transformer中采用的LePE。图中展示了LePE是如何直接作用于自注意力机制中的V(值)部分,并且作为一个并行模块存在的。LePE的引入使得位置信息能够更有效地融入到自注意力计算中,与其他位置编码机制相比,它提供了对局部位置信息的更强处理能力。
LePE的设计允许位置信息更直接地融入到自注意力计算中,与传统的位置编码方法相比,LePE为模型提供了更精细的局部位置感知能力。这在处理视觉任务时是极其有益的,因为它帮助模型更好地理解图像中各个部分的相对位置关系。
2.4 下游任务友好
下游任务友好性是指模型或技术易于被应用于特定任务的后续步骤或进一步的处理中。对于CSWin Transformer,其局部增强位置编码(LePE)的设计支持任意分辨率的输入,使得模型能够更容易地适应不同的视觉任务,如图像分类、目标检测和语义分割。这种灵活性意味着CSWin Transformer可以直接应用于各种不同分辨率的数据集,而无需进行复杂的重新调整或额外的预处理步骤,从而降低了对下游任务的应用难度。