YOLOv5改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络

简介: YOLOv5改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络

一、本文介绍

本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。我将其替换YOLOv5的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、ConvNeXt V2架构原理

image.png

2.1 ConvNeXt V2的基本原理

ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。这些创新显著提升了纯ConvNet在多个识别基准测试上的性能,如ImageNet分类、COCO检测和ADE20K分割。ConvNeXt V2还包括从效率型的3.7M参数Atto模型到650M参数的Huge模型的多个版本,覆盖了从轻量级到高性能的各种应用需求。

ConvNeXt V2的核心要点包括:

1. 架构创新:融合全卷积掩码自编码器框架和全局响应归一化(GRN)层,优化了原有ConvNeXt架构。 2. 自监督学习:利用自监督学习技术提高了模型的泛化能力和效率。

下图为大家比较了ConvNeXt V1和ConvNeXt V2两个版本中的块设计

image.png

在ConvNeXt V2块中,新增加了全局响应归一化(GRN)层,并且由于GRN层的引入,原先的LayerScale层变得多余,因此在V2版本中被去除。这些变化旨在优化网络的特征表示和提高模型的学习效率。

2.2 架构创新

ConvNeXt V2 架构创新主要体现在以下几个方面:

1. 全卷积掩码自动编码器(FCMAE):采用全卷积方法处理图像,特别适合处理带有掩码的图像数据。

2. 全局响应归一化(GRN)层:在卷积块中引入GRN层,增强了模型处理信息时的通道间竞争,提高特征表达的质量。

3. 去除LayerScale层:因为GRN层的加入,原来的LayerScale层变得多余,在V2架构中被移除,简化了模型结构。

这张图展示了ConvNeXt V2中提出的全卷积掩码自动编码器(FCMAE)框架

image.png

在这张图中,ConvNeXt V2的FCMAE框架采用了稀疏卷积技术作为其编码器的核心,这是为了有效地处理输入图像中的非掩蔽(可见)像素。编码器结构层次化,有助于捕获不同层级的特征信息。解码器相对简单,使用轻量级的ConvNeXt块,目的是重构图像,但仅限于目标(即被掩蔽的)区域。这种不对称设计允许模型在预训练时专注于关键区域,这对于图像的自监督学习特别有效。损失函数的计算仅在掩蔽的区域进行,进一步强化了模型对于目标区域的学习和重构能力。

目录
相关文章
|
26天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
18天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
29天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
54 2
|
29天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
35 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
19天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
35 0
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
28天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。