YOLOv8改进 | 2023主干篇 | 利用轻量化卷积优化PP-HGNetV2改进主干(全网独家创新)

简介: YOLOv8改进 | 2023主干篇 | 利用轻量化卷积优化PP-HGNetV2改进主干(全网独家创新)

一、本文介绍

Hello,大家好,上一篇博客我们讲了利用HGNetV2去替换YOLOv8的主干,经过结构的研究我们可以发现在HGNetV2的网络中有大量的卷积存在,所以我们可以用一种更加轻量化的卷积去优化HGNetV2从而达到更加轻量化的效果(亲测优化后的HGNetV2网络比正常HGNetV2精度更高轻量化效果更好,非常适合轻量化的读者),同时HGNetV2的网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析,给大家进行讲解网络结构原理(亲测替换之后主干GFLOPs降低到7.4,精度mAP提高0.06)。

轻量化效果:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、HGNetV2原理讲解

image.png

2.1 HGNetV2的网络结构讲解

PP-HGNet 骨干网络的整体结构如下:

image.png 上面的图表是PP-HGNet神经网络架构的概览,下面我对其中的每一个模块进行分析:

1. Stem层:这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。

2. HG(层次图)块:这些块是网络的核心组件,设计用于以层次化的方式处理数据。每个HG块可能处理数据的不同抽象层次,允许网络从低级和高级特征中学习。

3. LDS(可学习的下采样)层:位于HG块之间的这些层可能执行下采样操作,减少特征图的空间维度,减少计算负载并可能增加后续层的感受野。

4. GAP(全局平均池化):在最终分类之前,使用GAP层将特征图的空间维度减少到每个特征图一个向量,有助于提高网络对输入数据空间变换的鲁棒性。

5. 最终的卷积和全连接(FC)层:网络以一系列执行最终分类任务的层结束。这通常涉及一个卷积层(有时称为1x1卷积)来组合特征,然后是将这些特征映射到所需输出类别数量的全连接层。

这种架构的主要思想是利用层次化的方法来提取特征,其中复杂的模式可以在不同的规模和抽象层次上学习,提高网络处理复杂图像数据的能力。

这种分层和高效的处理对于图像分类等复杂任务非常有利,在这些任务中,精确预测至关重要的是在不同规模上识别复杂的模式和特征。图表还显示了HG块的扩展视图,包括多个不同滤波器大小的卷积层,以捕获多样化的特征,然后通过一个元素级相加或连接的操作(由+符号表示)在数据传递到下一层之前。

2.2 轻量化卷积

我这里利用的轻量化卷积只是官方仓库里面包含的四种,这个文章其实是给大家打开一个思路,这里的HGNet利用大量的卷积处理,所以我们能够替换其中大量的卷积从而达到优化和涨点的效果。

image.png

这几种卷积都是非常经典的了,其中RepConv只支持卷积核为3所以我也进行了一定的处理,原理就不再描述了。

目录
相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7200 1
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制)
1420 1
|
网络架构
YOLOv5改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv5(超级轻量化精度更高)
YOLOv5改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv5(超级轻量化精度更高)
614 0
|
8月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
1759 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
机器学习/深度学习 网络架构
YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)
YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)
952 1
|
机器学习/深度学习 编解码 PyTorch
CVPR 2023 | 主干网络FasterNet 核心解读 代码分析
本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。
9732 58
|
12月前
|
数据可视化 计算机视觉
训练数据集(一):真实场景下采集的煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练
本文介绍了一个用于煤炭与矸石分类的煤矸石目标检测数据集,包含891张训练图片和404张验证图片,分为煤炭、矸石和混合物三类。数据集已标注并划分为训练和验证集,适用于YOLOv5/v6/v7/v8训练。数据集可通过提供的链接下载。
430 1
训练数据集(一):真实场景下采集的煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练
|
12月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
17914 0
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。