YOLOv8改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)

简介: YOLOv8改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)

一、本文介绍

本文内容给大家带来的DWRSeg中的DWR模块来改进YOLOv8中的C2f和Bottleneck模块,主要针对的是小目标检测,主要创新点可以总结如下:多尺度特征提取机制的深入研究和创新的DWR模块和SIR模块的提出,这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到:DWRSeg的基本原理和框架,并且能够在你自己的网络结构中进行添加(DWRSeg需要增加一定的计算量一个DWR模块大概增加0.4GFLOPs)。

image.png

二、DWRSeg的原理介绍


image.png

2.1 DWRSeg的主要思想

DWRSeg的主要创新点可以总结如下:

  1. 多尺度特征提取机制的深入研究:利用深度分离扩张卷积进行多尺度特征提取,并设计了一种高效的两步残差特征提取方法(区域残差化 – 语义残差化)。这种方法显著提高了实时语义分割中捕获多尺度信息的效率。
  2. 创新的DWR模块和SIR模块的提出:提出了一个新颖的DWR(扩张残差)模块和SIR(简单反向残差)模块。这些模块具有精心设计的接收场大小,分别用于网络的上层和下层。

image.png

DWRSeg网络在实时语义分割领域取得了一定的效果(从论文的结果来看下图),特别是在提高处理速度和减轻模型负担的方面。

image.png

2.2 多尺度特征提取机制的深入研究

利用深度分离扩张卷积进行多尺度特征提取。主要内容可以总结如下:

  1. 两步残差特征提取方法:该方法包括区域残差化(Region Residualization)和语义残差化(Semantic Residualization),旨在提高实时语义分割中多尺度信息捕获的效率。
  2. 区域残差化:这一步骤中,首先将区域特征图分成几组,然后对这些组进行不同速率的深度分离扩张卷积。这样做可以智慧地根据第二步中的接收场大小来学习特征图,以反向匹配接收场。
  3. 语义残差化:在这一步中,仅使用一个具有期望接收场的深度分离扩张卷积对每个简洁的区域形式特征图进行基于语义的形态学过滤。这改变了多速率深度分离扩张卷积在特征提取中的角色,从尝试获取尽可能多的复杂语义信息转变为对每个简洁表达的特征图进行简单的形态学过滤。
  4. 精细化的扩张率和容量设计:为了充分利用每个网络阶段可以实现的不同区域大小的特征图,需要精心设计扩张率和深度分离卷积的容量,以匹配每个网络阶段的不同接收场要求。

通过这种多尺度特征提取机制的深入研究和创新设计,论文提高了实时语义分割任务中多尺度信息捕获的效率(第一小节的图片)

2.3 创新的DWR模块和SIR模块的提出

提出的DWR模块和SIR模块的创新点如下:

DWR(Dilation-wise Residual)模块(本文复现的就是这个DWR模块)

  • 应用场景:DWR模块主要应用于网络的高阶段,采用设计的两步特征提取方法。
  • 特征提取:该模块利用两步残差特征提取方法(区域残差化 – 语义残差化),有效提高实时语义分割中多尺度信息捕获的效率。
  • 接收场大小设计:DWR模块针对网络的上层设计了精细化的接收场大小。

SIR(Simple Inverted Residual)模块

  • 应用场景:SIR模块专门为网络的低阶段设计,以满足小接收场的需求,保持高效的特征提取效率。
  • 结构调整
  1. 移除了多分支扩张卷积结构,仅保留第一分支,以压缩接收场。
  2. 移除了对提取效果贡献较小的3x3深度分离卷积(语义残差化),因为输入特征图的大尺寸和弱语义使得单通道卷积收集的信息太少。因此,在低阶段,单步特征提取比两步特征提取更高效。

image.png

总结:这两个模块的设计改进对于提高实时语义分割网络的性能至关重要,高效处理多尺度上下文信息的能力方面。

目录
相关文章
|
7月前
|
算法 计算机视觉
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
429 2
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv5改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv5改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
324 1
|
2月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
643 0
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
5月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
211 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
7月前
|
计算机视觉
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
369 1
|
5月前
|
计算机视觉 网络架构
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测