YOLOv8改进 | 2023 | DiverseBranchBlock多元分支模块(有效涨点)

简介: YOLOv8改进 | 2023 | DiverseBranchBlock多元分支模块(有效涨点)

一、本文介绍

本文带来的改进机制是YOLOv8模型与多元分支模块(Diverse Branch Block)的结合,Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支,这些分支具有不同的尺度和复杂度,从而丰富特征空间。我将其放在了YOLOv8的不同位置上均有一定的涨点幅度,同时这个DBB模块的参数量并不会上涨太多,我添加三个该机制到模型中,GFLOPs上涨了0.4。

image.png

推荐指数:⭐⭐⭐⭐

打星原因:为什么打四颗星是因为我觉得这个机制的计算量会上涨,这是扣分点,其次涨幅效果也比较一般但是有涨点,当然可能是数据集的原因毕竟不同的数据集效果不同


二、Diverse Branch Block原理

image.png

2.1 Diverse Branch Block的基本原理

Diverse Branch Block(DBB)的基本原理是在训练阶段增加卷积层的复杂性,通过引入不同尺寸和结构的卷积分支来丰富网络的特征表示能力。我们可以将基本原理可以概括为以下几点:

1. 多样化分支结构:DBB 结合了不同尺度和复杂度的分支,如不同大小的卷积核和平均池化,以增加单个卷积的特征表达能力。

2. 训练与推理分离:在训练阶段,DBB 采用复杂的分支结构,而在推理阶段,这些分支可以被等效地转换为单个卷积层,以保持高效推理。

3. 宏观架构不变:DBB 允许在不改变整体网络架构的情况下,作为常规卷积层的替代品插入到现有网络中。

下面我将为大家展示Diverse Branch Block(DBB)的设计示例

image.png

在训练时(左侧),DBB由不同大小的卷积层和平均池化层组成,这些层以一种复杂的方式并行排列,并最终合并输出。训练完成后,这些复杂的结构会转换成单个卷积层,用于模型的推理阶段(右侧),以此保持推理时的效率。这种转换允许DBB在保持宏观架构不变的同时,增加训练时的微观结构复杂性。

2.2 多样化分支结构

多样化分支结构是在卷积神经网络中引入的一种结构,旨在通过多样化的分支来增强模型的特征提取能力。这些分支包含不同尺寸的卷积层和池化层,以及其他潜在的操作,它们并行工作以捕获不同的特征表示。在训练完成后,这些复杂的结构可以合并并简化为单个的卷积层,以便在推理时不增加额外的计算负担。这种设计使得DBB可以作为现有卷积层的直接替换,增强了现有网络架构的性能,而不需要修改整体架构

下面我详细展示了如何通过六种转换方法将训练时的Diverse Branch Block(DBB)转换为推理时的常规卷积层,每一种转换对应于一种特定的操作:

image.png

1. Transform I:将具有批量规范化(batch norm)的卷积层融合。

2. Transform II:合并具有相同配置的卷积层的输出。

3. Transform III:合并序列卷积层。

4. Transform IV:通过深度串联(concat)来合并卷积层。

5. Transform V:将平均池化(AVG)操作融入卷积操作中。

6. Transform VI:结合不同尺度的卷积层。

可以看到右侧的框显示了经过这些转换后,可以实现的推理时DBB,其中包含了常规卷积、平均池化和批量规范化操作。这些转换确保了在不增加推理时负担的同时,能够在训练时利用DBB的多样化特征提取能力。

2.3 训练与推理分离

训练与推理分离的概念是指在模型训练阶段使用复杂的DBB结构,而在模型推理阶段则转换为简化的卷积结构。这种设计允许模型在训练时利用DBB的多样性来增强特征提取和学习能力,而在实际应用中,即推理时,通过减少计算量来保持高效。这样,模型在保持高性能的同时,也保证了运行速度和资源效率。

下面我将展示在训练阶段如何通过不同的卷积组合(如图中的1x1和KxK卷积),以及在推理阶段如何将这些组合转换成一个简化的结构(如图中的转换IV所示的拼接操作):

image.png

经过分析,我们可以发现它说明了三种不同的情况

A)组卷积(Groupwise conv):将输入分成多个组,每个组使用不同的卷积核。

B)训练时的1x1-KxK结构:首先应用1x1的卷积(减少特征维度),然后是分组的KxK卷积。

C)从转换IV的角度看:这是将多个分组的卷积输出合并的视角。这里,组内卷积后的特征图先分别通过1x1卷积处理,然后再进行拼接(concat)。

2.4 宏观架构不变

宏观架构不变指的是DBB在设计时考虑到了与现有的网络架构兼容性,确保可以在不改变整体网络架构(如ResNet等流行架构)的前提下,将DBB作为一个模块嵌入。这意味着DBB增强了网络的特征提取能力,同时保持了原有网络结构的布局,确保了推理时的效率和性能。这样的设计允许研究者和开发者将DBB直接应用到现有的深度学习模型中,而无需进行大规模的架构调整。


目录
相关文章
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
656 3
|
算法 计算机视觉
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
YOLOv8改进 | 损失函数篇 | 最新ShapeIoU、InnerShapeIoU损失助力细节涨点
801 2
|
机器学习/深度学习 算法 Python
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
1691 1
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
|
计算机视觉
如何理解focal loss/GIOU(yolo改进损失函数)
如何理解focal loss/GIOU(yolo改进损失函数)
|
机器学习/深度学习 搜索推荐 算法
【王喆-推荐系统】模型篇-(task5)wide&deep模型
Wide&Deep是工业界中有巨大影响力的模型,如果直接翻译成中文是宽和深的模型,其模型结构如下所示:wide和deep让模型兼具逻辑回归和深度神经网络的特点。
1892 0
【王喆-推荐系统】模型篇-(task5)wide&deep模型
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
|
11月前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征本文提出了一种全局注意力机制,通过保留通道和空间信息,增强跨维度的交互,减少信息损失。该机制结合3D置换与多层感知器用于通道注意力,卷积空间注意力子模块用于空间注意力。实验结果表明,在CIFAR-100和ImageNet-1K数据集上,该方法在ResNet和MobileNet上优于多种最新注意力机制。
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
11月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
20268 2
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征