YOLOv8改进主干 -> ConvNeXtV2全卷积掩码自编码器网络

简介: YOLOv8改进主干 -> ConvNeXtV2全卷积掩码自编码器网络

一、本文介绍

本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。我将其替换YOLOv8的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

训练结果对比图->

1707288088876.jpg

二、ConvNeXt V2架构原理

image.png

2.1 ConvNeXt V2的基本原理

ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。这些创新显著提升了纯ConvNet在多个识别基准测试上的性能,如ImageNet分类、COCO检测和ADE20K分割。ConvNeXt V2还包括从效率型的3.7M参数Atto模型到650M参数的Huge模型的多个版本,覆盖了从轻量级到高性能的各种应用需求。

ConvNeXt V2的核心要点包括:

1. 架构创新:融合全卷积掩码自编码器框架和全局响应归一化(GRN)层,优化了原有ConvNeXt架构。

2. 自监督学习:利用自监督学习技术提高了模型的泛化能力和效率。

下图为大家比较了ConvNeXt V1和ConvNeXt V2两个版本中的块设计

image.png

在ConvNeXt V2块中,新增加了全局响应归一化(GRN)层,并且由于GRN层的引入,原先的LayerScale层变得多余,因此在V2版本中被去除。这些变化旨在优化网络的特征表示和提高模型的学习效率。

2.2 架构创新

ConvNeXt V2 架构创新主要体现在以下几个方面:

1. 全卷积掩码自动编码器(FCMAE):采用全卷积方法处理图像,特别适合处理带有掩码的图像数据。

2. 全局响应归一化(GRN)层:在卷积块中引入GRN层,增强了模型处理信息时的通道间竞争,提高特征表达的质量。

3. 去除LayerScale层:因为GRN层的加入,原来的LayerScale层变得多余,在V2架构中被移除,简化了模型结构。

这张图展示了ConvNeXt V2中提出的全卷积掩码自动编码器(FCMAE)框架

image.png

在这张图中,ConvNeXt V2的FCMAE框架采用了稀疏卷积技术作为其编码器的核心,这是为了有效地处理输入图像中的非掩蔽(可见)像素。编码器结构层次化,有助于捕获不同层级的特征信息。解码器相对简单,使用轻量级的ConvNeXt块,目的是重构图像,但仅限于目标(即被掩蔽的)区域。这种不对称设计允许模型在预训练时专注于关键区域,这对于图像的自监督学习特别有效。损失函数的计算仅在掩蔽的区域进行,进一步强化了模型对于目标区域的学习和重构能力。

目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
86 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
307 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
201 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
20天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
146 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
67 2
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
77 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。