Linux 驱动开发基础知识—— LED 驱动程序框架(四)

简介: Linux 驱动开发基础知识—— LED 驱动程序框架(四)

一、回顾字符设备驱动程序框架

       驱动层访问硬件外设寄存器依靠的是 ioremap 函数去映射到寄存器地址,然后开始控制寄存器。

       (1)确定主设备号,也可以让内核分配;

       (2)定义自己的 file_operations 结构体,这是核心

       (3)实现对应的 drv_open / drv_read / drv_write 等函数,填入 file_operations 结构体;

       (4) 把 file_operations 结构体告诉内核:通过 register_chrdev 函数;

       (5)谁来注册驱动程序?需要一个入口函数:安装驱动程序时,就会去调用这个 入口函数;

       (6)有入口函数就应该有出口函数:卸载驱动程序是,出口函数调用 unregister_chrdev;

       (7)其它完善:提供设备信息,自动创建设备节点: class_create,device_create

二、LED驱动程序

2.1 对于 LED 驱动,我们想要什么样的接口?

2.2 LED 驱动能支持多个板子的基础:分层思想

(1)把驱动拆分为通用的框架(leddrv.c)、具体的硬件操作(board_X.c):

(2)以面向对象的思想,改进代码,抽象出一个结构体:

struct led_operations {
  int (*init) (int which); /* 初始化LED, which-哪个LED */       
  int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
};

       每个单板相关的 board_X.c 实现自己的 led_operations 结构体,供上层的 leddrv.c 调用:

三、代码分析

       在hello驱动程序的基础上进行增添优化修改

       驱动程序分为上下两层:leddrv.c、board_demo.c。leddrv.c 负责注册 file_operations 结构体,它的 open/write 成员会调用 board_demo.c 中提供的硬件 led_opr 中的对应函数。

3.1 leddrv.c

#include <linux/module.h>
 
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
 
#include "led_opr.h"
 
#define LED_NUM 2
 
/* 1. 确定主设备号                                                                 */
static int major = 0;
static struct class *led_class;
struct led_operations *p_led_opr;
 
 
#define MIN(a, b) (a < b ? a : b)
 
/* 3. 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t led_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  return 0;
}
 
/* write(fd, &val, 1); */
static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
  int err;
  char status;
  struct inode *inode = file_inode(file);
  int minor = iminor(inode);
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  err = copy_from_user(&status, buf, 1);
 
  /* 根据次设备号和status控制LED */
  p_led_opr->ctl(minor, status);
  
  return 1;
}
 
static int led_drv_open (struct inode *node, struct file *file)
{
  int minor = iminor(node);
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  /* 根据次设备号初始化LED */
  p_led_opr->init(minor);
  
  return 0;
}
 
static int led_drv_close (struct inode *node, struct file *file)
{
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  return 0;
}
 
/* 2. 定义自己的file_operations结构体                                              */
static struct file_operations led_drv = {
  .owner   = THIS_MODULE,
  .open    = led_drv_open,
  .read    = led_drv_read,
  .write   = led_drv_write,
  .release = led_drv_close,
};
 
/* 4. 把file_operations结构体告诉内核:注册驱动程序                                */
/* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */
static int __init led_init(void)
{
  int err;
  int i;
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  major = register_chrdev(0, "100ask_led", &led_drv);  /* /dev/led */
 
 
  led_class = class_create(THIS_MODULE, "100ask_led_class");
  err = PTR_ERR(led_class);
  if (IS_ERR(led_class)) {
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    unregister_chrdev(major, "100ask_led");
    return -1;
  }
 
  for (i = 0; i < LED_NUM; i++)
    device_create(led_class, NULL, MKDEV(major, i), NULL, "100ask_led%d", i); /* /dev/100ask_led0,1,... */
 
  p_led_opr = get_board_led_opr();
  
  return 0;
}
 
/* 6. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数           */
static void __exit led_exit(void)
{
  int i;
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
 
  for (i = 0; i < LED_NUM; i++)
    device_destroy(led_class, MKDEV(major, i)); /* /dev/100ask_led0,1,... */
 
  device_destroy(led_class, MKDEV(major, 0));
  class_destroy(led_class);
  unregister_chrdev(major, "100ask_led");
}
 
 
/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */
 
module_init(led_init);
module_exit(led_exit);
 
MODULE_LICENSE("GPL");
 
 

       上层是 leddrv.c,它的核心是 file_operations 结构体

第20行:LED灯的个数

第37~78行:file_operations 结构体的成员函数

       第 49 行、第 60 行,会调用 led_operations 结构体中对应的函数。

/* write(fd, &val, 1); */
static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
  int err;
  char status;
  struct inode *inode = file_inode(file);
  int minor = iminor(inode);
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  err = copy_from_user(&status, buf, 1);
 
  /* 根据次设备号和status控制LED */
  p_led_opr->ctl(minor, status);
  
  return 1;
}
 
static int led_drv_open (struct inode *node, struct file *file)
{
  int minor = iminor(node);
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  /* 根据次设备号初始化LED */
  p_led_opr->init(minor);
  
  return 0;
}
 
static int led_drv_close (struct inode *node, struct file *file)
{
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  return 0;
}
 
/* 2. 定义自己的file_operations结构体                                              */
static struct file_operations led_drv = {
  .owner   = THIS_MODULE,
  .open    = led_drv_open,
  .read    = led_drv_read,
  .write   = led_drv_write,
  .release = led_drv_close,
};

第80~105行:驱动程序的上层:file_operations 结构体

       第 88 行向内核注册一个 file_operations 结构体。

       第99~100行:创建多个次设备号

       第 102 行从底层硬件相关的代码 board_demo.c 中获得 led_operaions 结构体。 、

/* 4. 把file_operations结构体告诉内核:注册驱动程序                                */
/* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */
static int __init led_init(void)
{
  int err;
  int i;
  
  printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
  major = register_chrdev(0, "100ask_led", &led_drv);  /* /dev/led */
 
 
  led_class = class_create(THIS_MODULE, "100ask_led_class");
  err = PTR_ERR(led_class);
  if (IS_ERR(led_class)) {
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    unregister_chrdev(major, "100ask_led");
    return -1;
  }
 
  for (i = 0; i < LED_NUM; i++)
    device_create(led_class, NULL, MKDEV(major, i), NULL, "100ask_led%d", i); /* /dev/100ask_led0,1,... */
 
  p_led_opr = get_board_led_opr();
  
  return 0;
}

第37~52行:led_drv_write

       第41行:监测当前状态

       第42行:获得次设备号,inode从file中获取

       第46行:将buf中的数据拷贝1个字节到status中

       第49行:根据次设备号和status控制LED

第54~63行:led_drv_open

       第56行:获得次设备号,inode从node中获取

       第60行:根据次设备号初始化LED

第82~105行:led_init

       第102行:入口函数中获得结构体指针

3.2 led_opr.h

        led_opr.h,它定义了一个 led_operations 结构体,把 LED 的操作抽象为这个结构体:

#ifndef _LED_OPR_H
#define _LED_OPR_H
 
struct led_operations {
  int (*init) (int which); /* 初始化LED, which-哪个LED */       
  int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
};
 
struct led_operations *get_board_led_opr(void);
 
 
#endif
 

3.3 board_demo.c

#include <linux/module.h>
 
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include "led_opr.h"
 
static int board_demo_led_init (int which) /* 初始化LED, which-哪个LED */     
{
  
  printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which);
  return 0;
}
 
static int board_demo_led_ctl (int which, char status) /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
{
  printk("%s %s line %d, led %d, %s\n", __FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off");
  return 0;
}
 
static struct led_operations board_demo_led_opr = {
  .init = board_demo_led_init,
  .ctl  = board_demo_led_ctl,
};
 
struct led_operations *get_board_led_opr(void)
{
  return &board_demo_led_opr;
}
 

3.4 Makefile

 
# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册
 
KERN_DIR = /home/book/100ask_roc-rk3399-pc/linux-4.4
 
all:
  make -C $(KERN_DIR) M=`pwd` modules 
  $(CROSS_COMPILE)gcc -o ledtest ledtest.c 
 
clean:
  make -C $(KERN_DIR) M=`pwd` modules clean
  rm -rf modules.order
  rm -f ledtest
 
# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.o
 
# leddrv.c board_demo.c 编译成 100ask.ko
100ask_led-y := leddrv.o board_demo.o
obj-m += 100ask_led.o

3.5 ledtest.c

 
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
 
/*
 * ./ledtest /dev/100ask_led0 on
 * ./ledtest /dev/100ask_led0 off
 */
int main(int argc, char **argv)
{
  int fd;
  char status;
  
  /* 1. 判断参数 */
  if (argc != 3) 
  {
    printf("Usage: %s <dev> <on | off>\n", argv[0]);
    return -1;
  }
 
  /* 2. 打开文件 */
  fd = open(argv[1], O_RDWR);
  if (fd == -1)
  {
    printf("can not open file %s\n", argv[1]);
    return -1;
  }
 
  /* 3. 写文件 */
  if (0 == strcmp(argv[2], "on"))
  {
    status = 1;
    write(fd, &status, 1);
  }
  else
  {
    status = 0;
    write(fd, &status, 1);
  }
  
  close(fd);
  
  return 0;
}
 
 

第 26 行打开设备节点。

如果用户想点亮 LED,第 37 行会把值“1”通过 write 函数写入驱动程序。

如果用户想熄灭 LED,第 42 行会把值“0”通过 write 函数写入驱动程序。

四、上机测试

4.1编译

编译程序,把代码上传代服务器后执行 make 命令。

cp 100ask_led.ko ledtest ~/nfs_rootfs/

4.2 挂载到开发板

在开发板上挂载 NFS

4.3 测试

最后在开发板上加载驱动程序,执行测试程序,如下:

[root@100ask:~]# insmod /mnt/led_drv.ko                        //安装驱动
[root@100ask:~]# lsmod                                         //查询驱动
[root@100ask:~]# rmmod /mnt/led_drv.ko                         //卸载驱动
[root@100ask:~]# ls / /dev/100ask_led* -l                      //查询设备
[root@100ask:~]# /mnt/ledtest /dev/100ask_led0 on              // 点灯
[root@100ask:~]# /mnt/ledtest /dev/100ask_led0 off             // 关灯
[root@100ask:~]# demsg                                         //查看内核信息

目录
相关文章
|
11天前
|
Linux 编译器 Android开发
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
在Linux环境下,本文指导如何交叉编译x265的so库以适应Android。首先,需安装cmake和下载android-ndk-r21e。接着,下载x265源码,修改crosscompile.cmake的编译器设置。配置x265源码,使用指定的NDK路径,并在配置界面修改相关选项。随后,修改编译规则,编译并安装x265,调整pc描述文件并更新PKG_CONFIG_PATH。最后,修改FFmpeg配置脚本启用x265支持,编译安装FFmpeg,将生成的so文件导入Android工程,调整gradle配置以确保顺利运行。
36 1
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
|
2月前
|
算法 Linux 测试技术
Linux C++开发中的代码优化之道:把握时机与策略
Linux C++开发中的代码优化之道:把握时机与策略
49 0
|
2月前
|
Linux Shell C语言
【Shell 命令集合 设备管理 】Linux控制Linux系统的键盘LED setleds命令 使用指南
【Shell 命令集合 设备管理 】Linux控制Linux系统的键盘LED setleds命令 使用指南
38 0
|
12天前
|
Unix Linux Shell
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
在Linux环境下交叉编译Android所需的FFmpeg so库,首先下载`android-ndk-r21e`,然后解压。接着,上传FFmpeg及相关库(如x264、freetype、lame)源码,修改相关sh文件,将`SYSTEM=windows-x86_64`改为`SYSTEM=linux-x86_64`并删除回车符。对x264的configure文件进行修改,然后编译x264。同样编译其他第三方库。设置环境变量`PKG_CONFIG_PATH`,最后在FFmpeg源码目录执行配置、编译和安装命令,生成的so文件复制到App工程指定目录。
43 9
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
|
2天前
|
前端开发 Linux iOS开发
【Flutter前端技术开发专栏】Flutter在桌面应用(Windows/macOS/Linux)的开发实践
【4月更文挑战第30天】Flutter扩展至桌面应用开发,允许开发者用同一代码库构建Windows、macOS和Linux应用,提高效率并保持平台一致性。创建桌面应用需指定目标平台,如`flutter create -t windows my_desktop_app`。开发中注意UI适配、性能优化、系统交互及测试部署。UI适配利用布局组件和`MediaQuery`,性能优化借助`PerformanceLogging`、`Isolate`和`compute`。
【Flutter前端技术开发专栏】Flutter在桌面应用(Windows/macOS/Linux)的开发实践
|
5天前
|
编解码 Linux
FFmpeg开发笔记(十二)Linux环境给FFmpeg集成libopus和libvpx
在《FFmpeg开发实战》一书中,介绍了如何在Linux环境下为FFmpeg集成libopus和libvpx,以支持WebM格式的Opus和VP8/VP9编码。首先,下载并安装libopus。接着,下载并安装libvpx。最后,在FFmpeg源码目录下,重新配置FFmpeg,启用libopus和libvpx,编译并安装。通过`ffmpeg -version`检查版本信息,确认libopus和libvpx已启用。
16 1
FFmpeg开发笔记(十二)Linux环境给FFmpeg集成libopus和libvpx
|
5天前
|
编解码 Linux
FFmpeg开发笔记(十)Linux环境给FFmpeg集成vorbis和amr
在Linux环境下,为FFmpeg添加对AAC、MP3、OGG和AMR音频格式的支持,需安装libogg、libvorbis和opencore-amr库。首先,从官方源下载各库的最新源码,如libogg-1.3.5、libvorbis-1.3.7和opencore-amr-0.1.6,然后解压并依次执行`./configure`、`make`和`make install`进行编译安装。接着,在FFmpeg源码目录中,使用`./configure`命令重新配置,并重新编译安装FFmpeg。最后,验证FFmpeg版本信息确认已启用ogg和amr支持。
16 0
FFmpeg开发笔记(十)Linux环境给FFmpeg集成vorbis和amr
|
10天前
|
Linux Shell Android开发
自动化脚本之GPIO/LED相关适用于Android/Linux
自动化脚本之GPIO/LED相关适用于Android/Linux
14 0
|
27天前
|
Linux API C语言
FFmpeg开发笔记(一)搭建Linux系统的开发环境
本文指导初学者如何在Linux上搭建FFmpeg开发环境。首先,由于FFmpeg依赖第三方库,可以免去编译源码的复杂过程,直接安装预编译的FFmpeg动态库。推荐网站<https://github.com/BtbN/FFmpeg-Builds/releases>提供适用于不同系统的FFmpeg包。但在安装前,需确保系统有不低于2.22版本的glibc库。详细步骤包括下载glibc-2.23源码,配置、编译和安装。接着,下载Linux版FFmpeg安装包,解压至/usr/local/ffmpeg,并设置环境变量。最后编写和编译简单的C或C++测试程序验证FFmpeg环境是否正确配置。
44 8
FFmpeg开发笔记(一)搭建Linux系统的开发环境
|
2月前
|
存储 缓存 Linux
探秘Linux块设备驱动程序:成为内核开发大师的第一步
探秘Linux块设备驱动程序:成为内核开发大师的第一步
97 0