python实现的LDA算法

简介: python实现的LDA算法

实现LDA算法需要用到一些数学和概率统计的知识,你需要根据LDA算法的具体公式,实现初始化模型参数、Gibbs采样、模型参数更新等具体的步骤。同时,还需要读取训练文件和词典文件,以及保存模型到文件的功能。

理解LDA算法的实现思路涉及到以下关键步骤:

初始化模型参数:

设置主题数(K), 超参数alpha, beta。

初始化文档-主题分布 (theta) 和 主题-词汇分布 (phi)。

读取文档数据,每行为一个文档,分词后用空格隔开。

构建词典,将每个词映射到唯一的整数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def read_and_build_dictionary(self):
        # Read training file and build vocabulary
        # Implement code to read and build dictionary...

初始化文档-主题分布和主题-词汇分布:

为每个文档中的每个词随机分配一个主题。

根据分配的主题,初始化文档-主题分布和主题-词汇分布。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def initialize(self):
        # ...
        # Initialize document-topic and topic-word distributions
        self.theta = np.random.dirichlet([self.alpha] * self.K, size=len(self.documents))
        self.phi = np.random.dirichlet([self.beta] * len(self.vocabulary), size=self.K)

Gibbs采样:

对每个文档中的每个词进行Gibbs采样。

在采样过程中,考虑当前文档-主题分布、主题-词汇分布以及词汇的分配情况。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def gibbs_sampling(self):
        # Implement Gibbs sampling algorithm...

更新模型参数:

根据采样得到的文档-主题分布和主题-词汇分布,更新模型的参数。

使用迭代方法逐步调整参数。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def update_model_parameters(self):
        # Update model parameters based on Gibbs sampling results
        # Implement parameter update code...

输出每个主题的前top_words个词:

根据学习到的主题-词汇分布,输出每个主题的前top_words个词,以便观察主题的含义。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def print_top_words_per_topic(self):
        # Output top_words words for each topic based on learned phi
        # Implement code to print top words...

保存模型:

将学习到的模型参数保存到文件,以备后续使用。

class LDA:
    def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix):
        # ...
    def save_model(self):
        # Save model parameters, theta, phi, etc. to files
        # Implement code to save model...

实际实现中需要考虑数学计算的优化、数据结构的选择、算法的效率等方面的问题。详细的公式和算法细节可以参考LDA的相关文献。在实现过程中,需要使用numpy等工具进行矩阵运算,以提高效率。

实例:

alpha = 0.1

beta = 0.1

K = 10 //主题个数

iter_num = 50 //迭代次数

top_words = 20 //每个主题显示的词的个数

wordmapfile = ‘./model/wordmap.txt’ //wordmap文件存储位置

trnfile = “./model/test.dat” //训练文件

modelfile_suffix = “./model/final” //模型文件的存储位置以及前缀 ‘’’

输入文件的要求: 每行为一篇文档,分词后用空格隔开。

运行命令:

‘’’ python lda.py ‘’’

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import random,os
alpha = 0.1
beta = 0.1
K = 10
iter_num = 50
top_words = 20
wordmapfile  = './model/wordmap.txt'
trnfile = "./model/test.dat"
modelfile_suffix = "./model/final"
class Document(object):
    def __init__(self):
        self.words = []
        self.length = 0
class Dataset(object):
    def __init__(self):
        self.M = 0
        self.V = 0
        self.docs = []
        self.word2id = {}    # <string,int>字典
        self.id2word = {}    # <int, string>字典
    def writewordmap(self):
        with open(wordmapfile, 'w') as f:
            for k,v in self.word2id.items():
                f.write(k + '\t' + str(v) + '\n')
class Model(object):
    def __init__(self, dset):
        self.dset = dset
        self.K = K
        self.alpha = alpha
        self.beta = beta
        self.iter_num = iter_num
        self.top_words = top_words
        self.wordmapfile = wordmapfile
        self.trnfile = trnfile
        self.modelfile_suffix = modelfile_suffix
        self.p = []        # double类型,存储采样的临时变量
        self.Z = []        # M*doc.size(),文档中词的主题分布
        self.nw = []       # V*K,词i在主题j上的分布
        self.nwsum = []    # K,属于主题i的总词数
        self.nd = []       # M*K,文章i属于主题j的词个数
        self.ndsum = []    # M,文章i的词个数
        self.theta = []    # 文档-主题分布
        self.phi = []      # 主题-词分布
    def init_est(self):
        self.p = [0.0 for x in xrange(self.K)]
        self.nw = [ [0 for y in xrange(self.K)] for x in xrange(self.dset.V) ]
        self.nwsum = [ 0 for x in xrange(self.K)]
        self.nd = [ [ 0 for y in xrange(self.K)] for x in xrange(self.dset.M)]
        self.ndsum = [ 0 for x in xrange(self.dset.M)]
        self.Z = [ [] for x in xrange(self.dset.M)]
        for x in xrange(self.dset.M):
            self.Z[x] = [0 for y in xrange(self.dset.docs[x].length)]
            self.ndsum[x] = self.dset.docs[x].length
            for y in xrange(self.dset.docs[x].length):
                topic = random.randint(0, self.K-1)
                self.Z[x][y] = topic
                self.nw[self.dset.docs[x].words[y]][topic] += 1
                self.nd[x][topic] += 1
                self.nwsum[topic] += 1
        self.theta = [ [0.0 for y in xrange(self.K)] for x in xrange(self.dset.M) ]
        self.phi = [ [ 0.0 for y in xrange(self.dset.V) ] for x in xrange(self.K)]
    def estimate(self):
        print 'Sampling %d iterations!' % self.iter_num
        for x in xrange(self.iter_num):
            print 'Iteration %d ...' % (x+1)
            for i in xrange(len(self.dset.docs)):
                for j in xrange(self.dset.docs[i].length):
                    topic = self.sampling(i, j)
                    self.Z[i][j] = topic
        print 'End sampling.'
        print 'Compute theta...'
        self.compute_theta()
        print 'Compute phi...'
        self.compute_phi()
        print 'Saving model...'
        self.save_model()
    def sampling(self, i, j):
        topic = self.Z[i][j]
        wid = self.dset.docs[i].words[j]
        self.nw[wid][topic] -= 1
        self.nd[i][topic] -= 1
        self.nwsum[topic] -= 1
        self.ndsum[i] -= 1
        Vbeta = self.dset.V * self.beta
        Kalpha = self.K * self.alpha
        for k in xrange(self.K):
            self.p[k] = (self.nw[wid][k] + self.beta)/(self.nwsum[k] + Vbeta) * \
                        (self.nd[i][k] + alpha)/(self.ndsum[i] + Kalpha)
        for k in range(1, self.K):
            self.p[k] += self.p[k-1]
        u = random.uniform(0, self.p[self.K-1])
        for topic in xrange(self.K):
            if self.p[topic]>u:
                break
        self.nw[wid][topic] += 1
        self.nwsum[topic] += 1
        self.nd[i][topic] += 1
        self.ndsum[i] += 1
        return topic
    def compute_theta(self):
        for x in xrange(self.dset.M):
            for y in xrange(self.K):
                self.theta[x][y] = (self.nd[x][y] + self.alpha) \
                                   /(self.ndsum[x] + self.K * self.alpha)
    def compute_phi(self):
        for x in xrange(self.K):
            for y in xrange(self.dset.V):
                self.phi[x][y] = (self.nw[y][x] + self.beta)\
                                 /(self.nwsum[x] + self.dset.V * self.beta)
    def save_model(self):
        with open(self.modelfile_suffix+'.theta', 'w') as ftheta:
            for x in xrange(self.dset.M):
                for y in xrange(self.K):
                    ftheta.write(str(self.theta[x][y]) + ' ')
                ftheta.write('\n')
        with open(self.modelfile_suffix+'.phi', 'w') as fphi:
            for x in xrange(self.K):
                for y in xrange(self.dset.V):
                    fphi.write(str(self.phi[x][y]) + ' ')
                fphi.write('\n')
        with open(self.modelfile_suffix+'.twords','w') as ftwords:
            if self.top_words > self.dset.V:
                self.top_words = self.dset.V
            for x in xrange(self.K):
                ftwords.write('Topic '+str(x)+'th:\n')
                topic_words = []
                for y in xrange(self.dset.V):
                    topic_words.append((y, self.phi[x][y]))
                #quick-sort
                topic_words.sort(key=lambda x:x[1], reverse=True)
                for y in xrange(self.top_words):
                    word = self.dset.id2word[topic_words[y][0]]
                    ftwords.write('\t'+word+'\t'+str(topic_words[y][1])+'\n')
        with open(self.modelfile_suffix+'.tassign','w') as ftassign:
            for x in xrange(self.dset.M):
                for y in xrange(self.dset.docs[x].length):
                    ftassign.write(str(self.dset.docs[x].words[y])+':'+str(self.Z[x][y])+' ')
                ftassign.write('\n')
        with open(self.modelfile_suffix+'.others','w') as fothers:
            fothers.write('alpha = '+str(self.alpha)+'\n')
            fothers.write('beta = '+str(self.beta)+'\n')
            fothers.write('ntopics = '+str(self.K)+'\n')
            fothers.write('ndocs = '+str(self.dset.M)+'\n')
            fothers.write('nwords = '+str(self.dset.V)+'\n')
            fothers.write('liter = '+str(self.iter_num)+'\n')
def readtrnfile():
    print 'Reading train data...'
    with open(trnfile, 'r') as f:
        docs = f.readlines()
    dset = Dataset()
    items_idx = 0
    for line in docs:
        if line != "":
            tmp = line.strip().split()
            #生成一个文档对象
            doc = Document()
            for item in tmp:
                if dset.word2id.has_key(item):
                    doc.words.append(dset.word2id[item])
                else:
                    dset.word2id[item] = items_idx
                    dset.id2word[items_idx] = item
                    doc.words.append(items_idx)
                    items_idx += 1
            doc.length = len(tmp)
            dset.docs.append(doc)
        else:
            pass
    dset.M = len(dset.docs)
    dset.V = len(dset.word2id)
    print 'There are %d documents' % dset.M
    print 'There are %d items' % dset.V
    print 'Saving wordmap file...'
    dset.writewordmap()
    return dset
def lda():
    dset = readtrnfile()
    model = Model(dset)
    model.init_est()
    model.estimate()
if __name__=='__main__':
    lda()
目录
相关文章
|
12天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
28天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
139 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
1天前
|
算法 安全 网络安全
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
27 9
|
8天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
30 10
|
26天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
52 17
|
1月前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
46 20
|
30天前
|
存储 人工智能 算法
深度解密:员工飞单需要什么证据之Python算法洞察
员工飞单是企业运营中的隐性风险,严重侵蚀公司利润。为应对这一问题,精准搜集证据至关重要。本文探讨如何利用Python编程语言及其数据结构和算法,高效取证。通过创建Transaction类存储交易数据,使用列表管理订单信息,结合排序算法和正则表达式分析交易时间和聊天记录,帮助企业识别潜在的飞单行为。Python的强大功能使得从交易流水和沟通记录中提取关键证据变得更加系统化和高效,为企业维权提供有力支持。
|
29天前
|
存储 算法 安全
U 盘管控情境下 Python 二叉搜索树算法的深度剖析与探究
在信息技术高度发达的今天,数据安全至关重要。U盘作为常用的数据存储与传输工具,其管控尤为关键。本文探讨Python中的二叉搜索树算法在U盘管控中的应用,通过高效管理授权U盘信息,防止数据泄露,保障信息安全。二叉搜索树具有快速插入和查找的优势,适用于大量授权U盘的管理。尽管存在一些局限性,如树结构退化问题,但通过优化和改进,如采用自平衡树,可以有效提升U盘管控系统的性能和安全性。
26 3

热门文章

最新文章