实现LDA算法需要用到一些数学和概率统计的知识,你需要根据LDA算法的具体公式,实现初始化模型参数、Gibbs采样、模型参数更新等具体的步骤。同时,还需要读取训练文件和词典文件,以及保存模型到文件的功能。
理解LDA算法的实现思路涉及到以下关键步骤:
初始化模型参数:
设置主题数(K), 超参数alpha, beta。
初始化文档-主题分布 (theta) 和 主题-词汇分布 (phi)。
读取文档数据,每行为一个文档,分词后用空格隔开。
构建词典,将每个词映射到唯一的整数。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def read_and_build_dictionary(self): # Read training file and build vocabulary # Implement code to read and build dictionary...
初始化文档-主题分布和主题-词汇分布:
为每个文档中的每个词随机分配一个主题。
根据分配的主题,初始化文档-主题分布和主题-词汇分布。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def initialize(self): # ... # Initialize document-topic and topic-word distributions self.theta = np.random.dirichlet([self.alpha] * self.K, size=len(self.documents)) self.phi = np.random.dirichlet([self.beta] * len(self.vocabulary), size=self.K)
Gibbs采样:
对每个文档中的每个词进行Gibbs采样。
在采样过程中,考虑当前文档-主题分布、主题-词汇分布以及词汇的分配情况。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def gibbs_sampling(self): # Implement Gibbs sampling algorithm...
更新模型参数:
根据采样得到的文档-主题分布和主题-词汇分布,更新模型的参数。
使用迭代方法逐步调整参数。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def update_model_parameters(self): # Update model parameters based on Gibbs sampling results # Implement parameter update code...
输出每个主题的前top_words个词:
根据学习到的主题-词汇分布,输出每个主题的前top_words个词,以便观察主题的含义。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def print_top_words_per_topic(self): # Output top_words words for each topic based on learned phi # Implement code to print top words...
保存模型:
将学习到的模型参数保存到文件,以备后续使用。
class LDA: def __init__(self, alpha, beta, K, iter_num, top_words, wordmapfile, trnfile, modelfile_suffix): # ... def save_model(self): # Save model parameters, theta, phi, etc. to files # Implement code to save model...
实际实现中需要考虑数学计算的优化、数据结构的选择、算法的效率等方面的问题。详细的公式和算法细节可以参考LDA的相关文献。在实现过程中,需要使用numpy等工具进行矩阵运算,以提高效率。
实例:
alpha = 0.1
beta = 0.1
K = 10 //主题个数
iter_num = 50 //迭代次数
top_words = 20 //每个主题显示的词的个数
wordmapfile = ‘./model/wordmap.txt’ //wordmap文件存储位置
trnfile = “./model/test.dat” //训练文件
modelfile_suffix = “./model/final” //模型文件的存储位置以及前缀 ‘’’
输入文件的要求: 每行为一篇文档,分词后用空格隔开。
运行命令:
‘’’ python lda.py ‘’’
#!/usr/bin/env python # -*- coding:utf-8 -*- import random,os alpha = 0.1 beta = 0.1 K = 10 iter_num = 50 top_words = 20 wordmapfile = './model/wordmap.txt' trnfile = "./model/test.dat" modelfile_suffix = "./model/final" class Document(object): def __init__(self): self.words = [] self.length = 0 class Dataset(object): def __init__(self): self.M = 0 self.V = 0 self.docs = [] self.word2id = {} # <string,int>字典 self.id2word = {} # <int, string>字典 def writewordmap(self): with open(wordmapfile, 'w') as f: for k,v in self.word2id.items(): f.write(k + '\t' + str(v) + '\n') class Model(object): def __init__(self, dset): self.dset = dset self.K = K self.alpha = alpha self.beta = beta self.iter_num = iter_num self.top_words = top_words self.wordmapfile = wordmapfile self.trnfile = trnfile self.modelfile_suffix = modelfile_suffix self.p = [] # double类型,存储采样的临时变量 self.Z = [] # M*doc.size(),文档中词的主题分布 self.nw = [] # V*K,词i在主题j上的分布 self.nwsum = [] # K,属于主题i的总词数 self.nd = [] # M*K,文章i属于主题j的词个数 self.ndsum = [] # M,文章i的词个数 self.theta = [] # 文档-主题分布 self.phi = [] # 主题-词分布 def init_est(self): self.p = [0.0 for x in xrange(self.K)] self.nw = [ [0 for y in xrange(self.K)] for x in xrange(self.dset.V) ] self.nwsum = [ 0 for x in xrange(self.K)] self.nd = [ [ 0 for y in xrange(self.K)] for x in xrange(self.dset.M)] self.ndsum = [ 0 for x in xrange(self.dset.M)] self.Z = [ [] for x in xrange(self.dset.M)] for x in xrange(self.dset.M): self.Z[x] = [0 for y in xrange(self.dset.docs[x].length)] self.ndsum[x] = self.dset.docs[x].length for y in xrange(self.dset.docs[x].length): topic = random.randint(0, self.K-1) self.Z[x][y] = topic self.nw[self.dset.docs[x].words[y]][topic] += 1 self.nd[x][topic] += 1 self.nwsum[topic] += 1 self.theta = [ [0.0 for y in xrange(self.K)] for x in xrange(self.dset.M) ] self.phi = [ [ 0.0 for y in xrange(self.dset.V) ] for x in xrange(self.K)] def estimate(self): print 'Sampling %d iterations!' % self.iter_num for x in xrange(self.iter_num): print 'Iteration %d ...' % (x+1) for i in xrange(len(self.dset.docs)): for j in xrange(self.dset.docs[i].length): topic = self.sampling(i, j) self.Z[i][j] = topic print 'End sampling.' print 'Compute theta...' self.compute_theta() print 'Compute phi...' self.compute_phi() print 'Saving model...' self.save_model() def sampling(self, i, j): topic = self.Z[i][j] wid = self.dset.docs[i].words[j] self.nw[wid][topic] -= 1 self.nd[i][topic] -= 1 self.nwsum[topic] -= 1 self.ndsum[i] -= 1 Vbeta = self.dset.V * self.beta Kalpha = self.K * self.alpha for k in xrange(self.K): self.p[k] = (self.nw[wid][k] + self.beta)/(self.nwsum[k] + Vbeta) * \ (self.nd[i][k] + alpha)/(self.ndsum[i] + Kalpha) for k in range(1, self.K): self.p[k] += self.p[k-1] u = random.uniform(0, self.p[self.K-1]) for topic in xrange(self.K): if self.p[topic]>u: break self.nw[wid][topic] += 1 self.nwsum[topic] += 1 self.nd[i][topic] += 1 self.ndsum[i] += 1 return topic def compute_theta(self): for x in xrange(self.dset.M): for y in xrange(self.K): self.theta[x][y] = (self.nd[x][y] + self.alpha) \ /(self.ndsum[x] + self.K * self.alpha) def compute_phi(self): for x in xrange(self.K): for y in xrange(self.dset.V): self.phi[x][y] = (self.nw[y][x] + self.beta)\ /(self.nwsum[x] + self.dset.V * self.beta) def save_model(self): with open(self.modelfile_suffix+'.theta', 'w') as ftheta: for x in xrange(self.dset.M): for y in xrange(self.K): ftheta.write(str(self.theta[x][y]) + ' ') ftheta.write('\n') with open(self.modelfile_suffix+'.phi', 'w') as fphi: for x in xrange(self.K): for y in xrange(self.dset.V): fphi.write(str(self.phi[x][y]) + ' ') fphi.write('\n') with open(self.modelfile_suffix+'.twords','w') as ftwords: if self.top_words > self.dset.V: self.top_words = self.dset.V for x in xrange(self.K): ftwords.write('Topic '+str(x)+'th:\n') topic_words = [] for y in xrange(self.dset.V): topic_words.append((y, self.phi[x][y])) #quick-sort topic_words.sort(key=lambda x:x[1], reverse=True) for y in xrange(self.top_words): word = self.dset.id2word[topic_words[y][0]] ftwords.write('\t'+word+'\t'+str(topic_words[y][1])+'\n') with open(self.modelfile_suffix+'.tassign','w') as ftassign: for x in xrange(self.dset.M): for y in xrange(self.dset.docs[x].length): ftassign.write(str(self.dset.docs[x].words[y])+':'+str(self.Z[x][y])+' ') ftassign.write('\n') with open(self.modelfile_suffix+'.others','w') as fothers: fothers.write('alpha = '+str(self.alpha)+'\n') fothers.write('beta = '+str(self.beta)+'\n') fothers.write('ntopics = '+str(self.K)+'\n') fothers.write('ndocs = '+str(self.dset.M)+'\n') fothers.write('nwords = '+str(self.dset.V)+'\n') fothers.write('liter = '+str(self.iter_num)+'\n') def readtrnfile(): print 'Reading train data...' with open(trnfile, 'r') as f: docs = f.readlines() dset = Dataset() items_idx = 0 for line in docs: if line != "": tmp = line.strip().split() #生成一个文档对象 doc = Document() for item in tmp: if dset.word2id.has_key(item): doc.words.append(dset.word2id[item]) else: dset.word2id[item] = items_idx dset.id2word[items_idx] = item doc.words.append(items_idx) items_idx += 1 doc.length = len(tmp) dset.docs.append(doc) else: pass dset.M = len(dset.docs) dset.V = len(dset.word2id) print 'There are %d documents' % dset.M print 'There are %d items' % dset.V print 'Saving wordmap file...' dset.writewordmap() return dset def lda(): dset = readtrnfile() model = Model(dset) model.init_est() model.estimate() if __name__=='__main__': lda()