【Elasticsearch】搜索结果处理和RestClient查询文档

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 【Elasticsearch】搜索结果处理和RestClient查询文档


2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search

{

 "query": {

   "match_all": {}

 },

 "sort": [

   {

     "FIELD": "desc"  // 排序字段、排序方式ASC、DESC

   }

 ]

}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search

{

 "query": {

   "match_all": {}

 },

 "sort": [

   {

     "_geo_distance" : {

         "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点

         "order" : "asc", // 排序方式

         "unit" : "km" // 排序的距离单位

     }

   }

 ]

}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:获取鼠标点击经纬度-地图属性-示例中心-JS API 2.0 示例 | 高德地图API

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

GET /hotel/_search

{

 "query": {

   "match_all": {}

 },

 "from": 0, // 分页开始的位置,默认为0

 "size": 10, // 期望获取的文档总数

 "sort": [

   {"price": "asc"}

 ]

}


2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search

{

 "query": {

   "match_all": {}

 },

 "from": 990, // 分页开始的位置,默认为0

 "size": 10, // 期望获取的文档总数

 "sort": [

   {"price": "asc"}

 ]

}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size
  • 优点:支持随机翻页
  • 缺点:深度分页问题,默认查询上限(from + size)是10000
  • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search
  • 优点:没有查询上限(单次查询的size不超过10000)
  • 缺点:只能向后逐页查询,不支持随机翻页
  • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll
  • 优点:没有查询上限(单次查询的size不超过10000)
  • 缺点:会有额外内存消耗,并且搜索结果是非实时的
  • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

GET /hotel/_search

{

 "query": {

   "match": {

     "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询

   }

 },

 "highlight": {

   "fields": { // 指定要高亮的字段

     "FIELD": {

       "pre_tags": "<em>",  // 用来标记高亮字段的前置标签

       "post_tags": "</em>" // 用来标记高亮字段的后置标签

     }

   }

 }

}


注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

3.RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

3.1.快速入门

我们以match_all查询为例

3.1.1.发起查询请求

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
  • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

3.1.2.解析响应

响应结果的解析:

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
  • total:总条数,其中的value是具体的总条数值
  • max_score:所有结果中得分最高的文档的相关性算分
  • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
  • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
  • SearchHits#getTotalHits().value:获取总条数信息
  • SearchHits#getHits():获取SearchHit数组,也就是文档数组
  • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

3.1.3.完整代码

完整代码如下:

@Test

void testMatchAll() throws IOException {

   // 1.准备Request

   SearchRequest request = new SearchRequest("hotel");

   // 2.准备DSL

   request.source()

       .query(QueryBuilders.matchAllQuery());

   // 3.发送请求

   SearchResponse response = client.search(request, RequestOptions.DEFAULT);


   // 4.解析响应

   handleResponse(response);

}


private void handleResponse(SearchResponse response) {

   // 4.解析响应

   SearchHits searchHits = response.getHits();

   // 4.1.获取总条数

   long total = searchHits.getTotalHits().value;

   System.out.println("共搜索到" + total + "条数据");

   // 4.2.文档数组

   SearchHit[] hits = searchHits.getHits();

   // 4.3.遍历

   for (SearchHit hit : hits) {

       // 获取文档source

       String json = hit.getSourceAsString();

       // 反序列化

       HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);

       System.out.println("hotelDoc = " + hotelDoc);

   }

}


3.1.4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象
  2. 准备Request.source(),也就是DSL。
    ① QueryBuilders来构建查询条件
    ② 传入Request.source() 的 query() 方法
  3. 发送请求,得到结果
  4. 解析结果(参考JSON结果,从外到内,逐层解析)

3.2.match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test

void testMatch() throws IOException {

   // 1.准备Request

   SearchRequest request = new SearchRequest("hotel");

   // 2.准备DSL

   request.source()

       .query(QueryBuilders.matchQuery("all", "如家"));

   // 3.发送请求

   SearchResponse response = client.search(request, RequestOptions.DEFAULT);

   // 4.解析响应

   handleResponse(response);


}


3.3.精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

3.4.布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test

void testBool() throws IOException {

   // 1.准备Request

   SearchRequest request = new SearchRequest("hotel");

   // 2.准备DSL

   // 2.1.准备BooleanQuery

   BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();

   // 2.2.添加term

   boolQuery.must(QueryBuilders.termQuery("city", "杭州"));

   // 2.3.添加range

   boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));


   request.source().query(boolQuery);

   // 3.发送请求

   SearchResponse response = client.search(request, RequestOptions.DEFAULT);

   // 4.解析响应

   handleResponse(response);


}


3.5.排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:

@Test

void testPageAndSort() throws IOException {

   // 页码,每页大小

   int page = 1, size = 5;


   // 1.准备Request

   SearchRequest request = new SearchRequest("hotel");

   // 2.准备DSL

   // 2.1.query

   request.source().query(QueryBuilders.matchAllQuery());

   // 2.2.排序 sort

   request.source().sort("price", SortOrder.ASC);

   // 2.3.分页 from、size

   request.source().from((page - 1) * size).size(5);

   // 3.发送请求

   SearchResponse response = client.search(request, RequestOptions.DEFAULT);

   // 4.解析响应

   handleResponse(response);


}


3.6.高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

3.6.1.高亮请求构建

高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test

void testHighlight() throws IOException {

   // 1.准备Request

   SearchRequest request = new SearchRequest("hotel");

   // 2.准备DSL

   // 2.1.query

   request.source().query(QueryBuilders.matchQuery("all", "如家"));

   // 2.2.高亮

   request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));

   // 3.发送请求

   SearchResponse response = client.search(request, RequestOptions.DEFAULT);

   // 4.解析响应

   handleResponse(response);


}


3.6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {

   // 4.解析响应

   SearchHits searchHits = response.getHits();

   // 4.1.获取总条数

   long total = searchHits.getTotalHits().value;

   System.out.println("共搜索到" + total + "条数据");

   // 4.2.文档数组

   SearchHit[] hits = searchHits.getHits();

   // 4.3.遍历

   for (SearchHit hit : hits) {

       // 获取文档source

       String json = hit.getSourceAsString();

       // 反序列化

       HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);

       // 获取高亮结果

       Map<String, HighlightField> highlightFields = hit.getHighlightFields();

       if (!CollectionUtils.isEmpty(highlightFields)) {

           // 根据字段名获取高亮结果

           HighlightField highlightField = highlightFields.get("name");

           if (highlightField != null) {

               // 获取高亮值

               String name = highlightField.getFragments()[0].string();

               // 覆盖非高亮结果

               hotelDoc.setName(name);

           }

       }

       System.out.println("hotelDoc = " + hotelDoc);

   }

}

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 自然语言处理 BI
|
3天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
6天前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
1天前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
12 0
|
1月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
48 6
|
1月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
45 1
|
2月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
180 2
|
2月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
57 4
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
223 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
1月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
46 5
下一篇
DataWorks