如何用 Prometheus Operator 监控 K8s 集群外服务?

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 如何用 Prometheus Operator 监控 K8s 集群外服务?

前言

前面系列文章中:

介绍了 Prometheus Operator 相比 原生 Prometheus 的一些优势, 其已经被各大厂商和流行开源云组件广泛采用. 推荐使用.

但是实战中, 可能并不是所有组件都在 K8S 集群内, 如: LB、DB、全局 DNS、云服务…

如何用 Prometheus Operator 监控它们? 这里有以下几种方案 (算不上方案, 小技巧而已)

用 Prometheus Operator 监控 K8s 集群外服务方案

如上文, 这里的 K8s 集群外服务, 指的是一些如 LB、DB、全局 DNS、云服务… 的静态服务.

针对此类服务, 有以下监控方案:

  1. 通过 Prometheus Operator CR -prometheusspec;
  1. 这种方案和 Prometheus 其他配置耦合性较高;
  1. 通过 external nameService+ServiceMonitor
  1. 这种方案有个前提, 即: 被监控的服务是域名;
  1. 通过Service+Endpoint+ServiceMonitor
  1. 这种方案的适应性较强, 耦合性也较低. 推荐. 👍️
  1. 如果是 BlackboxProbe 类的监控, 即监控: Endpoint(HTTP/S、DNS、TCP、ICMP 和 grpc)的各种参数,包括 HTTP 响应时间、DNS 查询延迟、SSL 证书过期信息、TLS 版本等等。可以直接使用 Probe CR, 前文: 如何使用 Blackbox Exporter 监控 URL? - 东风微鸣技术博客 (ewhisper.cn) 已经提过了, 本次就不再赘述.

方案一: prometheus spec

简而言之, 就是直接在 prometheus spec 中加入类似这样的静态配置 (static_configs):

static_configs:
  - targets:
    - SERVICE-FQDN
YAML

具体配置示例如下:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  name: monitor-kube-prometheus-st-prometheus
spec:
  additionalScrapeConfigs:
  - job_name: external
    metrics_path: /metrics
    static_configs:
      - targets:
        - <IP>:<PORT>
YAML

方案二: external name Service + ServiceMonitor

利用 Kubernetes 的 Externalname Serivce, 将服务映射到 DNS 名称, 而不是典型的选择算符,例如 my-service 或者 cassandra。

配置 Externalname Service:

apiVersion: v1
kind: Service
metadata:
  name: gpu-metrics-svc
  namespace: monitoring
  labels:
    k8s-app: gpu-metrics
spec:
  type: ExternalName
  externalName: <gpu-machine-ip>
  clusterIP: ''
  ports:
    - name: metrics
      port: 9100
      protocol: TCP
      targetPort: 9100
YAML

配置指向该 Service 的 ServiceMonitor:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: gpu-metrics-sm
  labels:
    k8s-app: gpu-metrics
    prometheus: kube-prometheus
spec:
  selector:
    matchLabels:
      k8s-app: gpu-metrics
    namespaceSelector:
      matchNames:
        - monitoring
  endpoints:
    - port: metrics
      interval: 10s
      honorLabels: true
YAML

方案三: Service + Endpoint + ServiceMonitor

通过 Service + Endpoint 方式, 明确将外部服务映射为内部 Service.

举例如下:

kind: Service
apiVersion: v1
metadata:
  name: external-es-exporter
  labels:
    app: elasticsearch
  namespace: monitoring
spec:
  type: ClusterIP
  ports:
    - name: metrics
      port: 9114
      protocol: TCP
      targetPort: 9114
---
apiVersion: v1
kind: Endpoints
metadata:
  name: external-log-es-exporter
  labels:
    app: elasticsearch
  namespace: monitoring
subsets:
  - addresses:
      - ip: <elasticsearch_ip_1>
      - ip: <elasticsearch_ip_2>
      - ip: <elasticsearch_ip_3>
    ports:
      - name: metrics
        port: 9114
        protocol: TCP
YAML

类似方案二, 再创建对应的 ServiceMonitor 即可:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: elasticsearch
spec:
  selector:
    matchLabels:
      app: elasticsearch
    namespaceSelector:
      matchNames:
        - monitoring
    endpoints:
    - port: metrics
      path: /metrics
      interval: 30s       
YAML

这样虽然绕了一些, 但是可以保证, 修改组件 A 的监控的时候, 完全不会影响到组件 B 的配置; 另外, 也不会影响到 Prometheus 其他的监控.

配置更精确;

粒度更细;

耦合度更低.

🎉🎉🎉

📚️ 参考文档


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
14天前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
1月前
|
存储 数据采集 Prometheus
Grafana Prometheus Altermanager 监控系统
Grafana、Prometheus 和 Alertmanager 是一套强大的开源监控系统组合。Prometheus 负责数据采集与存储,Alertmanager 处理告警通知,Grafana 提供可视化界面。本文简要介绍了这套系统的安装配置流程,包括各组件的下载、安装、服务配置及开机自启设置,并提供了访问地址和重启命令。适用于希望快速搭建高效监控平台的用户。
119 20
|
1月前
|
Prometheus 监控 Cloud Native
Prometheus+Grafana监控Linux主机
通过本文的步骤,我们成功地在 Linux 主机上使用 Prometheus 和 Grafana 进行了监控配置。具体包括安装 Prometheus 和 Node Exporter,配置 Grafana 数据源,并导入预设的仪表盘来展示监控数据。通过这种方式,可以轻松实现对 Linux 主机的系统指标监控,帮助及时发现和处理潜在问题。
147 7
|
1月前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
234 3
|
1月前
|
Prometheus 监控 Cloud Native
无痛入门Prometheus:一个强大的开源监控和告警系统,如何快速安装和使用?
Prometheus 是一个完全开源的系统监控和告警工具包,受 Google 内部 BorgMon 系统启发,自2012年由前 Google 工程师在 SoundCloud 开发以来,已被众多公司采用。它拥有活跃的开发者和用户社区,现为独立开源项目,并于2016年加入云原生计算基金会(CNCF)。Prometheus 的主要特点包括多维数据模型、灵活的查询语言 PromQL、不依赖分布式存储、通过 HTTP 拉取时间序列数据等。其架构简单且功能强大,支持多种图形和仪表盘展示模式。安装和使用 Prometheus 非常简便,可以通过 Docker 快速部署,并与 Grafana 等可
195 2
|
2月前
|
存储 Prometheus 监控
监控堆外第三方监控工具Prometheus
监控堆外第三方监控工具Prometheus
63 3
|
2月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
78 3
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
364 3
|
5月前
|
Prometheus 监控 Cloud Native
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
【监控】prometheus传统环境监控告警常用配置
|
2月前
|
Prometheus 监控 Cloud Native
在 HBase 集群中,Prometheus 通常监控哪些类型的性能指标?
在 HBase 集群中,Prometheus 监控关注的核心指标包括 Master 和 RegionServer 的进程存在性、RPC 请求数、JVM 内存使用率、磁盘和网络错误、延迟和吞吐量、资源利用率及 JVM 使用信息。通过 Grafana 可视化和告警规则,帮助管理员实时监控集群性能和健康状况。