8 种 Java 内存溢出之一:Java Heap Space

简介: 8 种 Java 内存溢出之一:Java Heap Space

1.1 java.lang.OutOfMemoryError: Java heap space 概述

Java 应用只允许使用有限的内存。这个限制是在应用启动的时候指定的。展开来说, Java 内存分成 2 个不同的区域。这两个区域叫做 Heap Space (堆内存)和 Permgen (Permanent Generation,即永久代)。

这两个区的大小是在 JVM 启动的时候设置, 可以通过 JVM 参数 -Xmx-XX:MaxPermSize 进行设置. 如果你没有进行特别的设置, 平台指定 的默认配置会被使用.

java.lang.OutOfMemoryError: Java heap space 错误会在应用尝试添加更多的数据到 heap space, 但是 heap 区没有足够的空间时触发.

需要注意的是即使 物理内存 可能有很多剩余, 但是只要 JVM 达到了 heap size 的限制, 就会抛出该错误.

1.2 原因

对于 java.lang.OutOfMemoryError: Java heap space , 最常见的原因很简单 – 你把一个 XXL 号的应用放到了一个 S 号的 Java heap space 里了. 也就是说 – 应用需要更多的 Java heap space 来让它正常运行. 对于这个 OutOfMemory, 其他的原因会更复杂, 通常是由于编程错误引起的:

  • 用户 / 数据量出现峰值 该应用被设计来处理一定数量的用户和一定数量的数据. 当用户数或数据量突然冲高, 并且超过了期望的阈值, 在出现峰值停止之前的正常运行时的操作触发了 java.lang.OutOfMemoryError: Java heap space 错误.
  • 内存泄漏 一种特定类型的编程错误导致应用频繁消耗更多的内存. 每当应用的泄漏的功能被使用时, 它就会在 Java heap space 种生成一些对象. 随着时间推移, 泄漏的对象消耗了所有可用的 Java heap space, 并且触发了常见的 java.lang.OutOfMemoryError: Java heap space 错误.

1.3 示例

1.3.1 示例 1

第一个例子相当简单 – 下列的 Java 代码尝试分配 200 万个 (2M) 整数数组. 当你编译该代码, 用一个 12MB 大小的 Java heap space (java -Xmx12m OOM) 运行. 它会运行失败, 抛出 java.lang.OutOfMemoryError: Java heap space 消息. 有 13MB Java heap space, 这个程序就能正常运行…

class OOM {
  static final int SIZE=2*1024*1024;
  public static void main (String[] a) {
    int[] i = new int[SIZE]
  }
}
JAVA

1.3.2 内存泄漏示例

第二个, 更现实一点的例子是内存泄漏. 在 Java 里, 当开发创建和使用新对象, 如: new Integer(5), 他们不必自己分派内存 – 这通过 JVM 来处理. 在应用生命周期中, JVM 会周期性地检查内存中的哪个对象仍在使用, 哪个没有. 没有被使用的对象会被丢弃, 然后内存重新声明并重新使用. 这个过程叫做 垃圾回收 . 对应的 JVM 里的模块叫做 垃圾收集器.

Java 的自动内存管理机制依赖于 GC 来周期性地查找没用的对象并移除他们. 简而言之, Java 内存泄漏是这么一种场景, 一些对象应用已经不用了, 但是 GC 却没有检查出来. 结果就是这些没用的对象仍然无限期地存在在 Java heap space 中. 如此往复, 最终触发 java.lang.OutOfMemoryError: Java heap space 错误.

构造一个满足内存泄漏定义的 Java 程序也相当容易:

class KeylessEntry {
  static class Key {
    Integer id;
 
    Key(Integer id) {
      this.id = id;
    }
  @Override
    public int hashCode() {
      return id.hashCode();
    }
  }
  public static void main(String[] args) {
    Map m = new HashMap();
    while (true)
      for (int i=0; i<10000, i++)
        if (!m.containsKey(new Key(i)))
          m.put(new Key(i), "Nmber:" + i);
  }
}
JAVA

当执行上面的代码时,您可能期望它永远运行而没有任何问题,假设原始缓存解决方案只将 Map 扩展到 10,000 个元素,除此之外,HashMap 中已经包含了所有键. 然而, 事实上元素会持续增加因为 Key 这个类没有在它的 hashCode() 中包含一个适当的equals() 实现.

结果, 随着时间推移, 因为泄漏代码的不断的使用, " 缓存 " 的结果会消耗大量的 Java heap space. 当泄漏的内存填满了 heap 区的所有的可用内存, 并且垃圾收集器无法清理, 会抛出java.lang.OutOfMemoryError: Java heap space.

解决办法也简单 – 添加个 equals() 方法的实现在下边, 就能很好的运行了. 但是在你最终找到这个 bug 之前, 你会消耗相当多的脑细胞.

@Override
public boolean equals(Object o) {
  boolean response = false;
  if (o instanceof Key) {
    response = (((Key)o).id).equals(this.id);
  }
  return response;
}
JAVA

1.4 解决方案

显然第一个解决方案就是 – 当你的 JVM 特定资源耗尽了, 你应该增加那个资源的量. 在这个案例中: 当你的应用没有足够的 Java heap space 内存来正常运行, 只需要在运行 JVM 的时候配置并添加 (或修改现有的) 如下参数:

-Xmx1024m

上述配置会给应用 1024M 的 Java heap space. 你可以使用 g 或者 G(单位是 GB), mM(MB), kK(KB). 例如下列都是设置最大 Java heap space 为 1GB:

java -Xmx1073741824 com.mycompany.MyClass
java -Xmx1048576k com.mycompany.MyClass
java -Xmx1024m com.mycompany.MyClass
java -Xmx1g com.mycompany.MyClass
STYLUS

然而, 在很多案例中, 提供更多的 Java heap space 只是饮鸩止渴. 例如, 如果你的应用存在内存泄漏, 添加更多的 heap 只是延缓 java.lang.OutOfMemoryError: Java heap space 错误的出现, 并不能解决问题. 另外, 增加 Java heap space 也会导致 GC 暂停时间的增加, 从而影响你的应用的 吞吐量和延迟.

如果你希望解决潜在的问题, 而不是头痛医头, 联系我就是最好的方式(@ ̄ー ̄@). 当然, 有几个工具适合你. Debuggers, profiles, heap dump analyzers – 供你选择

相关文章
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
36 0
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
44 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
64 5
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
存储 监控 算法
Java内存管理的艺术:深入理解垃圾回收机制####
本文将引领读者探索Java虚拟机(JVM)中垃圾回收的奥秘,解析其背后的算法原理,通过实例揭示调优策略,旨在提升Java开发者对内存管理能力的认知,优化应用程序性能。 ####
49 0
|
2月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
447 1
|
2月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
2月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
27 3