【MATLAB】交叉验证求光滑因子的广义神经网络回归预测算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【MATLAB】交叉验证求光滑因子的广义神经网络回归预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

交叉验证求光滑因子的广义神经网络回归预测算法是一种用于选择模型超参数并提高泛化性能的方法。下面将对该算法进行详细介绍:

  1. 广义神经网络回归模型:
  • 广义神经网络回归模型是一个包含多个层的神经网络模型,每层都由多个神经元组成。每个神经元都有权重和偏差,通过激活函数对输入进行非线性变换并输出结果。
  • 模型的目标是通过学习训练数据的特征来拟合输入与输出之间的关系,以进行预测。
  1. 光滑因子:
  • 光滑因子是正则化项的一种形式,用于控制模型的复杂度。它惩罚模型中过多的参数或过度拟合的现象,从而提高模型的泛化能力。
  • 光滑因子可以通过交叉验证选择,以找到最佳的超参数值。
  1. 交叉验证:
  • 交叉验证是一种模型评估技术,用于估计模型在未见过数据上的性能。
  • 通常,将可用的数据集划分为训练集和验证集。然后使用训练集来训练模型,并使用验证集来评估模型的性能。
  • 为了减小随机划分的影响,可以使用交叉验证重复多次,并取平均值作为最终的评估结果。
  1. 求光滑因子的算法步骤:
  • 步骤1:将数据集划分为K个折叠(folds)。
  • 步骤2:对于每个光滑因子的候选值进行如下循环操作:
  • 步骤2.1:对于每个折叠,将其余的K-1个折叠用于训练模型,留出一个折叠用于验证模型。
  • 步骤2.2:使用训练集训练广义神经网络回归模型,并根据验证集计算模型的预测误差。
  • 步骤2.3:将所有折叠的预测误差求和并计算其平均值,作为当前光滑因子的性能度量。
  • 步骤3:选择具有最佳性能度量的光滑因子作为最终的超参数值。

通过以上步骤,交叉验证求光滑因子的广义神经网络回归预测算法可以帮助我们选择合适的光滑因子,以提高模型的泛化性能并减少过拟合的风险。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】交叉验证求光滑因子的广义神经网络回归预测算法

https://mbd.pub/o/bread/ZZqTlJ1r

200 种 MATLAB 算法及绘图合集

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
3天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
110 80
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
54 31
|
21天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
120 30
|
18天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
16天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
3天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
227 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码