面试官:Sentinel是如何实现限流的?

简介: 面试官:Sentinel是如何实现限流的?

限流是一种通过控制系统对外提供的资源、服务或接口的访问数量或速率,以保护系统免受过载的一种策略。

它的目的是确保系统能够在承受范围内提供稳定和可靠的服务,避免因过多的请求而导致系统崩溃、资源耗尽或响应延迟过高的情况发生。

在 Sentinel 中,实现限流的方法有以下两种:

  1. 通过代码方法实现限流。
  2. 通过 Sentinel 控制台设置实现限流。

    1.通过代码实现限流

    通过代码实现限流需要以下两步方可实现:

  3. 定义资源

    1. 通过代码定义资源。
    2. 通过注解定义资源。
  4. 定义限流规则

具体实现如下。

1.1 定义资源

定义资源可以通过代码方式或注解方式来实现,具体实现如下。

① 通过代码定义资源

可以通过代码的的方式 SphU.entry("resourceName") 来定义资源,具体实现代码如下:

@RequestMapping("/getuser")
public String getUser() {
   
   
    try (Entry entry = SphU.entry("getuser")) {
   
   
        // 被保护逻辑
        return "User";
    } catch (Exception e) {
   
   
        // 限流之后的业务逻辑
        return "被限流了";
    }
}

PS:SphU 是 Sentinel Protection Hotspot Util 的缩写,Sentinel 热点保护工具类。

② 通过注解方式定义资源

通过注解 @SentinelResource 也可以实现资源的定义,如下代码所示:

// 定义资源和限流后触发的方法
@SentinelResource(value = "resourceName", blockHandler = "myBlockHandler")
@RequestMapping("/getnamebyid")
public String getNameById(Integer id) {
   
   
return id + "-lei";
}
// 限流后触发的方法
public String myBlockHandler(Integer id, BlockException blockException) {
   
   
    String msg = "Do myBlockHandler method.";
    System.out.println(msg);
    return msg;
}

其中,value 属性定义的资源名称,blockHandler 定义的是原方法被限流/降级/系统保护之后执行的方法。

注意事项
  1. 定义的限流方法 myBlockHandler 必须和原方法的返回值、参数保持一致;
  2. 限流方法必须添加 BlockException 参数,不然会因为找不到合适的限流后执行方法,而提示以下错误:

PS:其中“csp”表示 Concurrent Service Protection,即并发服务保护。

@SentinelResource 注解属性说明:

  • value:资源名称,必需项(不能为空)。
  • entryType:资源调用的流量类型:入口流量(EntryType.IN)和出口流量(EntryType.OUT),注意系统规则只对 IN 生效。
  • blockHandler/blockHandlerClass: 限流和熔断时执行 BlockException 所对应的方法名。
  • fallback/fallbackClass:非 BlockException 时,其他非限流、非熔断时异常对应的方法。
  • exceptionsToIgnore:用于指定哪些异常被排除掉,不会计入异常统计中,也不会进入 fallback 逻辑中,而是会原样抛出。

    注:1.6.0 之前的版本 fallback 函数只针对熔断降级异常(DegradeException)进行处理,不能针对业务异常进行处理。

1.2 定义限流规则

在 Spring Boot 项目中,只需要将限流规则添加到项目启动时执行即可,如下代码所示:

public static void main(String[] args) {
   
   
    SpringApplication.run(SentinelDemoApplication.class, args);
    // 加载限流规则
    initFlowRules();
}

而限流规则定义如下:

private static void initFlowRules() {
   
   
    List<FlowRule> rules = new ArrayList<>();
    FlowRule rule = new FlowRule();
    rule.setResource("resourceName"); // 资源名称
    rule.setGrade(RuleConstant.FLOW_GRADE_QPS); // 根据 QPS 限流
    rule.setCount(1); // QPS 阈值【每秒只允许通过一个请求】
    rule.setStrategy(RuleConstant.STRATEGY_DIRECT); // 调用关系限流策略【非必须设置】
    rule.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_DEFAULT); // 流控效果【非必须设置】
    rule.setClusterMode(false); // 是否集群限流【非必须设置,默认非集群】
    rules.add(rule);
    FlowRuleManager.loadRules(rules);
}

其中:

  • setStrategy:设置调用关系限流策略,包含的值有:
    • 直接(RuleConstant._STRATEGYDIRECT)【默认值】
    • 链路(RuleConstant._STRATEGYRELATE
    • 关联(RuleConstant._STRATEGYCHAIN
  • setControlBehavior:设置流控效果,包含的值有:
    • 直接拒绝(RuleConstant._CONTROL_BEHAVIORDEFAULT)【默认值】
    • 冷启动(RuleConstant._CONTROL_BEHAVIOR_WARMUP
    • 匀速启动(RuleConstant._CONTROL_BEHAVIOR_RATELIMITER
    • 冷启动+匀速启动(RuleConstant._CONTROL_BEHAVIOR_WARM_UP_RATELIMITER

      2.通过控制台实现限流

      Sentinel 还可以使用控制台的方式进行限流,不过默认情况下限流规则是保存在内存中,所以重启之后规则会丢失,默认情况下下的推送流程如下:

      它的实现步骤如下:
  1. 下载并运行 Sentinel Dashboard(控制台)。
  2. 在程序中加入并配置 Sentinel Dashboard。
  3. 在 Sentinel Dashboard 配置限流/熔断等规则。
  4. 验证效果。

    2.1 下载并运行Sentinel控制台

    我们可以从 Sentinel 官方仓库下载最新版本的控制台 jar 包,访问地址:https://github.com/alibaba/Sentinel/releases

使用如下命令启动控制台:

java -jar sentinel-dashboard.jar --server.port=18080

从 Sentinel 1.6.0 起,Sentinel 控制台引入基本的登录功能,默认用户名和密码都是 sentinel。可以参考 鉴权模块文档 配置用户名和密码,命令如下:

java -Dserver.port=18080 -Dsentinel.dashboard.auth.username=sentinel -Dsentinel.dashboard.auth.password=123456 -jar sentinel-dashboard.jar

Sentinel 控制台启动时的可选配置项:

配置项 默认值 描述
server.port 8080 指定端口
csp.sentinel.dashboard.server localhost:8080 指定地址
project.name - 指定程序的名称
sentinel.dashboard.auth.username sentinel Dashboard 登录账号(需要版本1.6+)
sentinel.dashboard.auth.password sentinel Dashboard 登录密码(需要版本1.6+)
server.servlet.session.timeout 30分钟 登录 Session 过期时间(需要版本1.6+)

配置为 7200 表示 7200 秒
配置为 60m 表示 60 分钟 |

2.2 在程序中加入并配置 Sentinel

在需要进行流控的项目中加入 Sentinel 依赖:

<dependency>
  <groupId>com.alibaba.cloud</groupId>
  <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

在项目中配置 Sentinel Dashboard 地址:

spring:
  application:
    name: sentinel-dashboard-demo
  cloud:
    sentinel:
      transport:
        dashboard: localhost:18080
        client-ip: 127.0.0.1 
        port: 8721
        heartbeat-interval-ms: 10000

其中,只有 dashboard 是必输项,其他的都可以省略,他们的含义如下:

  • dashboard:sentinel 控制台地址。
  • client-ip:当前客户端 IP,不设置自动选择一个 IP 注册。
  • port:与 sentinel 通讯的端口,如不设置,会从 8719 开始扫描,依次 +1,直到找到未被占用的接口。
  • heartbeat-interval-ms:心跳发送周期,默认值是 10s。

    2.3 设置规则

    2.4 新增限流规则


    参数说明:

  • 针对来源:Sentinel 可以针对调用者进行限流,填写具体微服务名时,指定对此微服务进行限流 ,默认值为 default(不区分来源,全部限制)。

  • 阈值类型/单机阈值:用于限制和控制流量的一种度量标准的类型,可以为 QPS(Queries Per Second,每秒请求数)也可以为“并发线程数”。
    • QPS:每秒请求达到此值开始限流。
    • 并发线程数:请求此资源的线程达到某个值时限流。每个请求分配一个线程,当请求执行时间长时,很快就会触发限流,相反如果线程执行速度快,那么限流触发就会概率就会比较小。
  • 流控模式:流量控制模式。
    • 直接:接口达到限流条件时,直接限流。
    • 关联:当关联的资源达到阈值时,就限流自己。
    • 链路:指定资源从入口资源进来的流量,如果达到阈值,就进行限流。
  • 流控效果:流量控制效果。
    • 快速失败:该方式是默认的流量控制方式,比如 QPS 超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出 FlowException。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。
    • 排队等待(也叫匀速通过):排队等待会严格控制请求通过的间隔时间,让请求稳定且匀速的通过,可以用来处理间隔性突发的高流量。例如抢票软件,在某一秒或者一分钟内有大量的请求到来,而接下来的一段时间里处于空闲状态,我们希望系统能够在接下来的空余时间里也能出去这些请求,而不是直接拒绝。在设置排队等待时,需要填写超时时间。
    • Warm Up:此项叫做预热或者冷启动方式,此模式主要是防止流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮,通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。当使用 Warm Up 模式时,我们还需要指定启动时开放的 QPS 比例(DEFAULT_COLD_FACTOR,默认值为 3,代表 30%),以及系统预热所需时长(warmUpPeriodSec,默认值是 10 秒)。

限流页面当“是否集群”选中之后,就会是这样的界面:

其中最后一项“失败退化”中的 Token Server 含义如下:
Token Server 是 Sentinel 用于集群流量控制的关键组件,它负责分发令牌并进行流量控制。当 Sentinel 的应用程序配置为集群限流模式时,它会向 Token Server 请求令牌,然后根据令牌情况来进行流量控制。如果 Token Server 不可用,可能是由于网络故障、Token Server 实例崩溃等原因,这时候无法从 Token Server 获取令牌。
Token Server 配置的含义如下:

  • 当配置选项为"是"时:表示当 Token Server 不可用时,Sentinel 会自动切换为单机限流模式。在单机限流模式中,Sentine 会从本地的限流规则进行流量控制,不再依赖 Token Server。这样可以保证即使 Token Server 不可用,也能够继续对流量进行限制。
  • 当配置选项为"否"时:表示当 Token Server 不可用时,Sentinel 不会自动切换为单机限流模式,流量控制会被暂停,即无法进行限流,可能会导致服务负载过高。

    课后思考

    Sentinel 中使用了什么限流算法?它的底层是如何实现的?除了 Sentinel 之外,还有哪些限流的实现方法?

本文已收录到我的面试小站 www.javacn.site,其中包含的内容有:Redis、JVM、并发、并发、MySQL、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、设计模式、消息队列等模块。

相关文章
|
NoSQL 算法 Java
面试官:网关如何实现限流?
面试官:网关如何实现限流?
537 2
面试官:网关如何实现限流?
|
5月前
|
监控 Java Sentinel
使用Sentinel进行服务调用的熔断和限流管理(SpringCloud2023实战)
Sentinel是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
151 3
|
5月前
|
存储 算法 NoSQL
百度面试:如何用Redis实现限流?
百度面试:如何用Redis实现限流?
73 2
|
1月前
|
负载均衡 算法 Java
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
40岁老架构师尼恩分享了关于SpringCloud核心组件的底层原理,特别是针对蚂蚁集团面试中常见的面试题进行了详细解析。内容涵盖了Nacos注册中心的AP/CP模式、Distro和Raft分布式协议、Sentinel的高可用组件、负载均衡组件的实现原理等。尼恩强调了系统化学习的重要性,推荐了《尼恩Java面试宝典PDF》等资料,帮助读者更好地准备面试,提高技术实力,最终实现“offer自由”。更多技术资料和指导,可关注公众号【技术自由圈】获取。
蚂蚁面试:Nacos、Sentinel了解吗?Springcloud 核心底层原理,你知道多少?
|
4月前
|
监控 Java 应用服务中间件
SpringCloud面试之流量控制组件Sentinel详解
SpringCloud面试之流量控制组件Sentinel详解
230 0
|
4月前
|
监控 算法 Java
高并发架构设计三大利器:缓存、限流和降级问题之配置Sentinel的流量控制规则问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之配置Sentinel的流量控制规则问题如何解决
|
6月前
|
算法 Java 应用服务中间件
阿里面试:说说自适应限流?
限流想必大家都不陌生,它是一种控制资源访问速率的策略,用于保护系统免受过载和崩溃的风险。限流可以控制某个服务、接口或系统在一段时间内能够处理的请求或数据量,以防止系统资源耗尽、性能下降或服务不可用。 常见的限流策略有以下几种: 1. **令牌桶算法**:基于令牌桶的方式,限制每个单位时间内允许通过的请求量,请求量超出限制的将被拒绝或等待。 2. **漏桶算法**:基于漏桶的方式,限制系统处理请求的速率,请求速率过快时将被限制或拒绝。 3. **计数器算法**:通过计数器记录单位时间内的请求次数,并根据设定的阈值进行限制。 通过合理的限流策略,可以保护系统免受恶意攻击、突发流量和资源
66 4
阿里面试:说说自适应限流?
|
6月前
|
Java 数据安全/隐私保护 Sentinel
微服务学习 | Spring Cloud 中使用 Sentinel 实现服务限流
微服务学习 | Spring Cloud 中使用 Sentinel 实现服务限流
|
6月前
|
Java 应用服务中间件 nginx
面试官:限流的实现方式有哪些?
面试官:限流的实现方式有哪些?
135 5
|
6月前
|
SpringCloudAlibaba 监控 Java
SpringCloud Alibaba Sentinel实现熔断与限流--学习笔记
SpringCloud Alibaba Sentinel实现熔断与限流--学习笔记
108 0