【办公自动化】使用Python一键提取PDF中的表格到Excel

简介: 【办公自动化】使用Python一键提取PDF中的表格到Excel

一、Python处理Excel


  • Python处理Excel的好处


1.批量操作:当要处理众多Excel文件时,例如出现重复性的手工劳动,那么使用Python就可以实现批量扫描文件、自动化进行处理,利用代码代替手工重复劳动,实现自动化,是Python第一个比Excel强大的地方

2.大型文件,当Excel文件超过几十兆、甚至上百兆时,打开文件很慢、处理文件更加慢,这时候若使用Python,会发现处理几十兆、几百兆甚至几GB都是没有问题的

3.当使用Excel进行复杂的计算时,会使用VBA,但是VBA本身是过时并且复杂的语言,Python是当前最简单且容易实现的一门语言,用Python能够处理比VBA难度更高的业务逻辑

4.Python是通用语言,不仅可以处理Excel,使用Python就可以得到很多额外的功能,例如:爬虫、发布网页的Web服务、与数据库进行连接、同时结合word和PPT进行处理、加入定时任务处理、人工智能分析等,各种额外的功能,这是Excel和VBA所不具备的


  • Python处理Excel主要有三大类库


1.pandas:是Python领域非常重要的,用于数据分析和可视化的类库,在处理Excel中,90%可以利用pandas类库就可以搞掂,利用pandas就可以读取Excel、处理Excel和输出Excel,但是pandas也有缺点,就是无法做到格式类,例如Excel中合并单元、大量复杂的样式(看起来很精美)的时候,用pandas无法搞掂,此时,依然是使用pandas结合openyxl、xlwings来搞掂需求

2.openpyxl:若电脑上未安装office时,也可以使用openpyxl,这个类型可以运行在linux上,并且也可以实现操作大部分Excel格式和样式的功能,使用它配合pandas,也可以完成大部分场景的需求

3.xlwings:比openyxl更加强大,只能运行在Windows或者Mac系统,并且该系统中必须安装了office才能运行,xlwings的原理,就是基于当前系统已经安装好的office软件,来进行功能的拓展来操作Excel


  • 使用pandas的时候,经常会结合其他类库,来完成更加复杂的功能

flask:可以做网页,把表格展示在网页上

Matplotlib:读取表格后,进行可视化

sklearn:进行复杂的数据分析时,也可以结合机器学习Sklearn把读取的Excel数据,进行数据分析和机器学习

Python-docx:也可以结合Python-docx类库,实现Excel和word的互通

smtplib:也可以使用smtplib,讲Excel数据发送邮件出去


  • 开发环境


操作系统:使用windows, mac都可以


Python版本:系统中需要安装Python3.6以上的版本,Python2已经过期不建议使用,Python3.6以前的版本功能相对弱,最好就是采用Python3.6以上的版本


开发工具:有两个可以选择,jupyter notebook,是个网页编辑器,可以运行Python,常常用于交互性、探索性的开发;pycharm,用于成熟脚本,或者web服务的一些开发;这两个工具可以随意选择

重要类库:xlwings, pandas, matplotlib等


二、提取PDF表格到excel


        从PDF文件获取表格中的数据,也是日常办公容易涉及到的一项工作。一个一个复制吧,效率确实太低了。用Python从PDF文档中提取表格数据,并写入Excel文件,灰常灰常高效。上市公司的年报往往包含几百张表格,用它作为例子再合适不过,搞定这个,其他含表格的PDF都是小儿科了。今天以"保利地产年报"为例,这个PDF文档中有321页含有表格,总表格数超过这个数了。


       先导入PDF读取模块`pdfplumber`,随便挑一页看下表格数据的结构。如下,我们挑了第4页`pages[3]`来读取其中的表格,并显示。这里读取表格,用到了`extract_tables()`,即默认每页有多个表格。它会将单个表格的数据按行读取存入列表,再将每个表格的所有数据汇总存到一个上一级列表,最后将所有表格的数据汇总到一个大列表。而`extract_table()`方法则只能读一张表,当一个页面有多张表,就默认选第一个,因此会漏掉后面的。而且它们的数据结构也不同,差异如下。  


“保利地产年报”第四页如图所示,读取的结果存到列表`table`,显示如下:

#观察读取出来的表格的数据结构
import pdfplumber
with pdfplumber.open("保利地产年报.pdf") as p:
    page = p.pages[3] #选取第4页(起始页为0)
    table = page.extract_tables() #多表格读取,存为嵌套列表
    print(table)
[[['', '常用词语释义', None, None, None, None, None, ''], ['中国证监会', None, '', '指', '', '', '中国证券监督管理委员会', ''], ['国资委', None, '', '指', '', '', '国务院国有资产监督管理委员会', ''], ['上交所', None, '', '指', '', '上海证券交易所', None, None], ['公司、本公司、保利地产', None, '指', None, None, '保利发展控股集团股份有限公司,原名称保利房\n地产(集团)股份有限公司', None, None], ['报告期、本报告期', None, '', '指', '', '2018年度', None, None], ['元、万元、亿元', None, '', '指', '', '人民币元、人民币万元、人民币亿元', None, None]], [['公司的中文名称', '保利发展控股集团股份有限公司'], ['公司的中文简称', '保利地产'], ['公司的外文名称', 'Poly Developments and Holdings Group Co., Ltd.'], ['公司的外文名称缩写', 'PDH'], ['公司的法定代表人', '宋广菊']], [['', '董事会秘书', '证券事务代表'], ['姓名', '黄海', '尹超'], ['联系地址', '广东省广州市海珠区阅江中路688号保利国际广场北塔33层董事会办公室', None], ['电话', '020-89898833', None], ['传真', '020-89898666-8831', None], ['电子信箱', 'stock@polycn.com', None]], [['公司注册地址', '广州市海珠区阅江中路688号保利国际广场30-33层'], ['公司注册地址的邮政编码', '510308'], ['公司办公地址', '广州市海珠区阅江中路688号保利国际广场北塔30-33层'], ['公司办公地址的邮政编码', '510308'], ['公司网址', 'www.polycn.com;www.gzpoly.com'], ['电子信箱', 'stock@polycn.com']], [['公司选定的信息披露媒体名称', '《中国证券报》、《上海证券报》、《证券时报》'], ['登载年度报告的中国证监会指定网站的网址', 'www.sse.com.cn'], ['公司年度报告备置地点', '公司董事会办公室']]]

确保可正常读取表格,以及了解读取出来的表格的数据结构,下面就可以一次性读取出所有表格,并存入Excel文件中了。导入相应模块,然后使用`pdfplumber`打开PDF文件。使用`Workbook()`新建Excel工作簿,然后使用`remove()`将其自带的工作表删除。因为我们想用PDF文件中表格所在的页码给相应的Excel工作表命名,以便二者的编号一致,方便后续查询。所以需要使用`enumerate()`给PDF的页从1开始编号。然后使用`extract_tables()`获取表格数据。


       当然,如果当页没有表格,则`extract_tables()`获得的是空值`None`。在后续的操作中,空值会报错,所以加入`if`语句来做个判断。只有当列表`tables`不为空,即里面有货的时候,才建新的Excel表格,并执行后续的写入操作。列表`tables`若为空(即当页没有表格),则直接跳到下一页。


       当发现当页有表格后,新建一个Excel表,以“Sheet”加上此时PDF的页码(比如“Sheet3”)命名。在写入数据时,先用一个`for`循环获得单个表格的数据,再用第二个`for`循环获得表格中一行的数据,然后写入Excel表。最后保存数据。由于表格太多,程序运行时间较长,大约需要3分钟。

import pdfplumber
from openpyxl import Workbook    
with pdfplumber.open("保利地产年报.pdf") as p:
    wb = Workbook() #新建excel工作簿
    wb.remove(wb.worksheets[0])#删除工作簿自带的工作表
    for index,page in enumerate(p.pages,start = 1): #从1开始给所有页编号
        tables = page.extract_tables() #读取表格
        if tables: #判断是否存在表格,若不存在,则不执行下面的语句
            ws = wb.create_sheet(f"Sheet{index}") #新建工作表,表名的编号与表在PDF中的页码一致
            for table in tables: #遍历所有列表
                for row in table: #遍历列表中的所有子列表,里面保存着行数据
                    ws.append(row) #写入excel表
    wb.save("保利地产年报表格.xlsx")

数百个表格就这样潇洒地复制到Excel表格中了。


  如果想要指定某个表格,在提取数据的时候指定页码即可。但如果想批量导出大量不同公司的年报的指定表格,则需要使用关键词定位了。还好,无论深圳市场还是上海市场,公司的年报中的标题基本都是唯一的,这给我们用标题做关键词提供了方便。假设我们需要提取公司“主要会计数据”下面的表格,则用关键词“主要会计数据”定位即可。如下以此为例进行操作。  

import os
import pdfplumber
from openpyxl import Workbook    
path='PDF'  #文件所在文件夹
files = [path+"\\"+i for i in os.listdir(path)] #获取文件夹下的文件名,并拼接完整路径
key_words = "主要会计数据"
for file in files:
    with pdfplumber.open(file) as p:
        wb = Workbook() #新建excel工作簿
        wb.remove(wb.worksheets[0])#删除工作簿自带的工作表
        #获取关键词所在页及下一页的页码
        pages_wanted = []
        for index,page in enumerate(p.pages): #从0开始给所有页编号
            if key_words in page.extract_text():
                pages_wanted.append(index)
                pages_wanted.append(index+1)
                break
        #提取指定页码里的表格
        for i in pages_wanted:     
            page = p.pages[i]
            tables = page.extract_tables() #读取表格
            if tables: #判断是否存在表格,若不存在,则不执行下面的语句
                ws = wb.create_sheet(f"Sheet{i+1}") #新建工作表,表名的编号与表在PDF中的页码一致
                for table in tables: #遍历所有列表
                    for row in table: #遍历列表中的所有子列表,里面保存着行数据
                        ws.append(row) #写入excel表
        wb.save("Excel\\{}.xlsx".format(file.split("\\")[1].split(".")[0]))

 以上,增加了一段获取关键词所在页码及下一页的页码的程序。之所以要获取关键词下一页页码,是因为有些表格会跨页,为了不遗漏数据,宁愿多获取一点。一旦找到关键词所在页,马上用`break`停止`for`循环。后面再遍历`pages_wanted`里面储存的页码,提取表格并写入Excel文件,并保存即可。批量获取的指定内容保存在`Excel`文件夹下。


三、往期推荐


Python提取pdf中的表格数据(附实战案例)

使用Python自动发送邮件

Python操作ppt和pdf基础

Python操作word基础

Python操作excel基础

目录
相关文章
|
6天前
|
运维 监控 Python
自动化运维:使用Python脚本简化日常任务
【10月更文挑战第36天】在数字化时代,运维工作的效率和准确性成为企业竞争力的关键。本文将介绍如何通过编写Python脚本来自动化日常的运维任务,不仅提高工作效率,还能降低人为错误的风险。从基础的文件操作到进阶的网络管理,我们将一步步展示Python在自动化运维中的应用,并分享实用的代码示例,帮助读者快速掌握自动化运维的核心技能。
18 3
|
5天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
18 1
|
12天前
|
运维 监控 应用服务中间件
自动化运维:如何利用Python脚本提升工作效率
【10月更文挑战第30天】在快节奏的IT行业中,自动化运维已成为提升工作效率和减少人为错误的关键技术。本文将介绍如何使用Python编写简单的自动化脚本,以实现日常运维任务的自动化。通过实际案例,我们将展示如何用Python脚本简化服务器管理、批量配置更新以及监控系统性能等任务。文章不仅提供代码示例,还将深入探讨自动化运维背后的理念,帮助读者理解并应用这一技术来优化他们的工作流程。
|
13天前
|
数据管理 程序员 数据处理
利用Python自动化办公:从基础到实践####
本文深入探讨了如何运用Python脚本实现办公自动化,通过具体案例展示了从数据处理、文件管理到邮件发送等常见办公任务的自动化流程。旨在为非程序员提供一份简明扼要的实践指南,帮助他们理解并应用Python在提高工作效率方面的潜力。 ####
|
13天前
|
运维 监控 Linux
自动化运维:如何利用Python脚本优化日常任务##
【10月更文挑战第29天】在现代IT运维中,自动化已成为提升效率、减少人为错误的关键技术。本文将介绍如何通过Python脚本来简化和自动化日常的运维任务,从而让运维人员能够专注于更高层次的工作。从备份管理到系统监控,再到日志分析,我们将一步步展示如何编写实用的Python脚本来处理这些任务。 ##
|
19天前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
24 1
|
1月前
|
运维 监控 网络安全
自动化运维的魔法:如何用Python简化日常任务
【10月更文挑战第9天】在数字时代的浪潮中,运维人员面临着日益增长的挑战。本文将揭示如何通过Python脚本实现自动化运维,从而提高效率、减少错误,并让运维工作变得更具创造性。我们将探索一些实用的代码示例,这些示例将展示如何自动化处理文件、监控系统性能以及管理服务器配置等常见运维任务。准备好让你的运维工作升级换代了吗?让我们开始吧!
|
10天前
|
Web App开发 测试技术 数据安全/隐私保护
自动化测试的魔法:使用Python进行Web应用测试
【10月更文挑战第32天】本文将带你走进自动化测试的世界,通过Python和Selenium库的力量,展示如何轻松对Web应用进行自动化测试。我们将一起探索编写简单而强大的测试脚本的秘诀,并理解如何利用这些脚本来确保我们的软件质量。无论你是测试新手还是希望提升自动化测试技能的开发者,这篇文章都将为你打开一扇门,让你看到自动化测试不仅可行,而且充满乐趣。
|
1月前
|
索引 Python
Excel学习笔记(一):python读写excel,并完成计算平均成绩、成绩等级划分、每个同学分数大于70的次数、找最优成绩
这篇文章是关于如何使用Python读取Excel文件中的学生成绩数据,并进行计算平均成绩、成绩等级划分、统计分数大于70的次数以及找出最优成绩等操作的教程。
56 0
|
1月前
|
存储 BI 数据库
使用 Python 实现自动化办公
使用 Python 实现自动化办公