OpenAI Gym 中级教程——多智能体系统

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: OpenAI Gym 中级教程——多智能体系统

Python OpenAI Gym 中级教程:多智能体系统

在强化学习中,多智能体系统涉及到多个智能体相互作用的情况。在本篇博客中,我们将介绍如何在 OpenAI Gym 中构建和训练多智能体系统,并使用 Multi-Agent Deep Deterministic Policy Gradients(MADDPG)算法进行协同训练。

1. 安装依赖

首先,确保你已经安装了 OpenAI Gym 和其他必要的依赖:

pip install gym
pip install numpy
pip install tensorflow
pip install matplotlib

2. 多智能体环境

我们将以一个简单的多智能体环境为例,该环境称为 MultiAgentEnv,其中包含两个智能体,它们分别控制两辆小车,目标是使两辆小车在一个二维平面上协同移动,避免相互碰撞。

import gym
from gym import spaces
import numpy as np

class MultiAgentEnv(gym.Env):
    def __init__(self):
        super(MultiAgentEnv, self).__init__()

        # 定义动作空间和观察空间
        self.action_space = spaces.Discrete(5)  # 5个离散动作
        self.observation_space = spaces.Box(low=0, high=1, shape=(4,), dtype=np.float32)  # 连续观察空间,包含4个状态

        # 初始化两辆小车的状态
        self.agent1_state = np.array([0.2, 0.5, 0.0, 0.0])
        self.agent2_state = np.array([0.8, 0.5, 0.0, 0.0])

    def reset(self):
        # 重置环境,将两辆小车放置在初始位置
        self.agent1_state = np.array([0.2, 0.5, 0.0, 0.0])
        self.agent2_state = np.array([0.8, 0.5, 0.0, 0.0])
        return np.concatenate([self.agent1_state, self.agent2_state])

    def step(self, actions):
        # 执行动作,更新两辆小车的状态并返回奖励和观察结果
        self.agent1_state[0] += 0.1 * (actions[0] - 2)
        self.agent1_state[1] += 0.1 * (actions[1] - 2)

        self.agent2_state[0] += 0.1 * (actions[2] - 2)
        self.agent2_state[1] += 0.1 * (actions[3] - 2)

        # 规定状态范围在 [0, 1] 之间
        self.agent1_state[:2] = np.clip(self.agent1_state[:2], 0, 1)
        self.agent2_state[:2] = np.clip(self.agent2_state[:2], 0, 1)

        # 计算奖励
        reward1 = -np.linalg.norm(self.agent1_state[:2] - self.agent2_state[:2])
        reward2 = -np.linalg.norm(self.agent2_state[:2] - self.agent1_state[:2])

        # 返回观察结果、奖励、是否终止和其他信息
        return np.concatenate([self.agent1_state, self.agent2_state]), [reward1, reward2], False, {
   }

3. MADDPG 算法

接下来,我们将实现 MADDPG 算法。为了简化,我们将只实现两个智能体的情况。

import tensorflow as tf
from tensorflow.keras import layers

class ActorCritic(tf.keras.Model):
    def __init__(self, num_actions):
        super(ActorCritic, self).__init__()

        # 定义Actor网络
        self.actor_fc1 = layers.Dense(64, activation='relu')
        self.actor_fc2 = layers.Dense(64, activation='relu')
        self.actor_output = layers.Dense(num_actions, activation='softmax')

        # 定义Critic网络
        self.critic_fc1 = layers.Dense(64, activation='relu')
        self.critic_fc2 = layers.Dense(64, activation='relu')
        self.critic_output = layers.Dense(1, activation='linear')

    def call(self, state):
        # Actor网络输出动作概率
        actor_x = self.actor_fc1(state)
        actor_x = self.actor_fc2(actor_x)
        action_probs = self.actor_output(actor_x)

        # Critic网络输出状态值
        critic_x = self.critic_fc1(state)
        critic_x = self.critic_fc2(critic_x)
        state_value = self.critic_output(critic_x)

        return action_probs, state_value

4. 训练多智能体系统

现在,我们将使用 MADDPG 算法来训练多智能体系统。

def train_maddpg(env, model1, model2, optimizer1, optimizer2, num_episodes=1000, gamma=0.99):
    for episode in range(num_episodes):
        state = env.reset()
        state = tf.convert_to_tensor(state, dtype=tf.float32)

        total_reward1 = 0
        total_reward2 = 0

        with tf.GradientTape() as tape1, tf.GradientTape() as tape2:
            for t in range(1000):  # 最多运行1000个时间步
                action_probs1, state_value1 = model1(state[None, :])
                action1 = tf.random.categorical(tf.math.log(action_probs1), 1)[0, 0]

                action_probs2, state_value2 = model2(state[None, :])
                action2 = tf.random.categorical(tf.math.log(action_probs2), 1)[0, 0]

                next_state, rewards, done, _ = env.step([action1.numpy(), action2.numpy()])
                next_state = tf.convert_to_tensor(next_state, dtype=tf.float32)

                total_reward1 += rewards[0]
                total_reward2 += rewards[1]

                action_probs1_next, _ = model1(next_state[None, :])
                action_probs2_next, _ = model2(next_state[None, :])

                # 计算Advantage和Target
                advantage1 = rewards[0] + gamma * tf.reduce_max(action_probs1_next) - state_value1
                advantage2 = rewards[1] + gamma * tf.reduce_max(action_probs2_next) - state_value2

                target1 = rewards[0] + gamma * tf.reduce_max(action_probs1_next)
                target2 = rewards[1] + gamma * tf.reduce_max(action_probs2_next)

                # 计算Actor和Critic的损失
                loss_actor1 = -tf.math.log(action_probs1[0, action1]) * advantage1
                loss_actor2 = -tf.math.log(action_probs2[0, action2]) * advantage2

                loss_critic1 = tf.square(target1 - state_value1)
                loss_critic2 = tf.square(target2 - state_value2)

                # 计算总损失
                total_loss1 = loss_actor1 + loss_critic1
                total_loss2 = loss_actor2 + loss_critic2

        # 更新参数
        gradients1 = tape1.gradient(total_loss1, model1.trainable_variables)
        optimizer1.apply_gradients(zip(gradients1, model1.trainable_variables))

        gradients2 = tape2.gradient(total_loss2, model2.trainable_variables)
        optimizer2.apply_gradients(zip(gradients2, model2.trainable_variables))

        if episode % 10 == 0:
            print(f"Episode: {episode}, Total Reward Agent 1: {total_reward1}, Total Reward Agent 2: {total_reward2}")

5. 主函数

最后,我们将定义一个主函数来运行我们的多智能体系统。

if __name__ == "__main__":
    # 创建多智能体环境和模型
    env = MultiAgentEnv()
    model1 = ActorCritic(num_actions=5)
    model2 = ActorCritic(num_actions=5)

    # 创建优化器
    optimizer1 = tf.optimizers.Adam(learning_rate=0.001)
    optimizer2 = tf.optimizers.Adam(learning_rate=0.001)

    # 训练多智能体系统
    train_maddpg(env, model1, model2, optimizer1, optimizer2, num_episodes=500)

通过这个示例,我们演示了如何在 OpenAI Gym 中构建一个简单的多智能体环境,并使用 MADDPG 算法对多智能体系统进行协同训练。这个示例可以作为入门多智能体强化学习的起点,同时展示了 TensorFlow 和 OpenAI Gym 在多智能体环境中的基本应用。希望这篇博客对你理解和应用多智能体系统有所帮助。

目录
相关文章
|
7月前
|
机器学习/深度学习 数据可视化 数据处理
OpenAI Gym 高级教程——可解释性和可视化
OpenAI Gym 高级教程——可解释性和可视化
286 1
|
19天前
|
数据采集 人工智能 自然语言处理
万字干货|复杂表格多Agent方案:从LLM洞察、系统性 思考到实践经验总结
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
|
6月前
|
人工智能 安全 人机交互
ACL 2024:PsySafe:跨学科视角下的Agent系统安全性研究
【6月更文挑战第21天】PsySafe是一个创新框架,关注多智能体系统集成大型语言模型后的安全风险。它从心理学角度评估和强化系统安全,通过模拟攻击检测漏洞,并设计防御策略。研究显示智能体的负面心理状态影响其行为安全,揭示了心理状态与行为模式的关联。该框架为MAS安全性研究提供新途径,但也面临智能体心理评估准确性和行为评估方法的挑战。[\[arxiv.org/pdf/2401.11880\]](https://arxiv.org/pdf/2401.11880)
83 6
|
2月前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
248 6
|
5月前
|
云计算
云计算MetaGPT问题之MetaGPT问题中在MetaGPT系统中智能体是协同工作如何解决
云计算MetaGPT问题之MetaGPT问题中在MetaGPT系统中智能体是协同工作如何解决
48 0
|
6月前
|
人工智能 自然语言处理 决策智能
超长小说可以用AI翻译了,新型多智能体协作系统媲美人工翻译
【6月更文挑战第11天】研究人员开发了一种基于大型语言模型的多智能体协作系统TransAgents,用于文学翻译,挑战复杂的文学文本翻译。通过单语人类偏好和双语LLM偏好评估,系统在保留文学风格和表达上表现出色,尤其在需要领域知识的文本中。然而,系统在捕捉文学翻译的细微差别、文化特定元素和长文本翻译效率上仍有局限性。相关论文链接:https://arxiv.org/abs/2405.11804
167 1
|
7月前
|
自然语言处理 前端开发 Swift
Llama3 中文通用Agent微调模型来啦!(附手把手微调实战教程)
Llama3模型在4月18日公布后,国内开发者对Llama3模型进行了很多训练和适配,除了中文纯文本模型外,多模态版本也陆续在发布中。
|
7月前
|
人工智能 决策智能 C++
【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)- 整体框架解析
【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)- 整体框架解析
657 1
|
7月前
|
XML JSON API
【AIGC】LangChain Agent 最新教程详解及示例学习
【5月更文挑战第5天】LangChain Agent全网最全最新教程学习及示例学习
888 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
如何使用Sora?OpenAI Sora 介绍及使用教程
2024年2月16日,OpenAI 在其官网上面正式宣布推出文本生成视频的大模型 Sora, Sora能够根据简单的文本描述,生成高达60秒的高质量视频,使得视频创作变得前所未有的简单和高效。
如何使用Sora?OpenAI Sora 介绍及使用教程