首次曝光!在线视频衣物精确检索技术,开启刷剧败明星同款时代

简介:

CVPR是由全球最大的非营利专业技术学会IEEE(电气和电子工程师协会)举办的计算机视觉领域的国际顶会,2017CVPR收到超过2500篇论文投递,最终收录不到800篇,阿里巴巴集团iDST和AI LAB 有多篇论文被收录。

今天为大家深入解读被CVPR 2017收录的论文之一、来自阿里巴巴iDST 视频分析团队的《从视频到电商:视频衣物精确检索》。

《从视频到电商:视频衣物精确检索》围绕视频电商业务场景,提出了一个在线视频衣物精确检索系统。该系统能够满足用户在观看影视剧时想要同时购买明星同款的需求。

整个系统采用了目前最先进的衣物检测和跟踪技术。针对明星同款检索中存在的多角度、多场景、遮挡等问题,提出可变化的深度树形结构(ReconfigurableDeep Tree structure)利用多帧之间的相似匹配解决单一帧检索存在的遮挡、模糊等问题。该结构可以认为是对现有attention模型的一种扩展,可以用来解决多模型融合问题。

image
论文技术在天猫魔盒视频中应用

业务场景及研究问题:视频电商中的衣物精确匹配

早在2014年,阿里与优酷土豆发布视频电商战略,称未来可以实现边看边买,使得视频电商的概念,继微博电商,朋友圈电商之后浮出水面。电商平台拥有少量商品,而视频网站具有巨大的流量,二者结合是发展的必然结果。电商平台可以借助视频网站的流量来实现导流和平台下沉,而视频网站则需要通过广告点击和商品成交来实现流量变现,因此二者的结合可谓一拍即合。

视频电商的商业主旨是打造以视频为入口的购物服务,视频中出现所有物体都可能是商品,提供包括边看边买、明星同款、广告投放等服务,它集娱乐、休闲、购物于一体,给用户构造出一种“身临其境”情境营销,或者是明星同款的冲动式消费。视频电商目前已经不是停留在概念层次了,视频网站向电商的导流转化也一直在不断的尝试中。

影视剧中的服饰存在较大的差异性和异构性,同一个目标往往展现出较大的差异。服饰购物图像通常具有杂乱、多样的背景,而且常在户外拍摄。多样化的背景可能是建筑物,街道、风景、汽车等多种情况。由于自然场景下受到光线、角度、大小、分辨率、几何学和光度学的变化等影响,使得服饰呈现出现的外形极为复杂,即使是同一件服饰也会出现变化较大的效果。

同时在线网站为更好地展示服饰的效果,通常聘请时尚模特穿着所售商品,模特/人物姿势变化也是导致服饰变化的一个重要因素。由于以上这些因素,使得视频明星同款搜索成为了一个极具挑战性的技术问题。

网络结构及技术细节

AsymNet网络结构:整个Asymnet深度神经网络结构如图1所示。当用户通过机顶盒(天猫魔盒)观看视频时,该网络将从电商网站(淘宝、天猫)检索到与之匹配的衣服,并推荐给用户。

为忽略复杂背景对检索结果的影响,更准确的进行服装定位,我们首先应用服饰检测技术,提取得到服饰区域一组候选框。然后对这些候选框进行跟踪,得到明星同款在视频中的的运动轨迹。对于衣物候选区域和运动轨迹我们分别利用用图像特征网络(IFN)和视频特征网络(VFN)进行特征学习。

考虑到服装的运动轨迹,衣物精确检索问题被定义为不对称(多对单)匹配问题,我们提出可变化的深度树形结(Reconfigurable Deep Tree Structure),利用多帧之间的相似匹配解决单一帧检索存在的遮挡、模糊等问题。后续本文将详细介绍模型的各个部分。

image
图 1 Asymnet深度神经网络结构

图像特征网络(IFN):传统CNN网络要求输入图像为固定的227x227(因为CNN网络中的卷积层需要有一个确定的预定义的维度)。在视频电商业务场景中,因为衣物检测候选框为任意大小,尺度变化很大,传统CNN网络无法进行有效的特征学习。

针对这一问题,我们利用空间金字塔池化结构(SPP)体系结构,如图2所示。它通过空间池聚合最后一个卷积层的特征,从而使池区域的大小与输入的大小无关。

image
图 2 Asymnet图像特征网络(IFN)

视频特征网络 (VFN):为了更好的考虑视频的空间序列模式,进一步提高衣物检索的性能。基于 LSTM,我们提出了视频特征网络 (VFN),如图3所示。其中实验验证明两层堆叠式 LSTM 结构能够在视频特征学习中得到最佳性能。


image
图 3 Asymnet视频特征网络(VFN)

相似性网络:明星同款匹配不同于近似衣物检索,精确匹配要求完全一致。在完全一致的要求下,传统的通过相似性计算来进行检索的方法,不能满足明星同款精确匹配要求。已有的方法通常将精确匹配问题转换为一个二分类问题,但这种方式适应性差,只能利用单一时刻的视频帧。

为了能够利用整个衣物运动轨迹,我们提出了如下的可变化的深度树形结构(ReconfigurableDeep Tree structure)将匹配问题转换为逻辑回归问题。匹配网络拟采用基于混合专家系统的逻辑回归网络。该结构可以认为是对现有attention模型的一种扩展,可以用来解决多模型融合问题。

image
图 4 Asymnet相似性网络

整个模型的目标函数是综合考虑每一帧的匹配结果,得到基于整个衣物运动序列和电商衣物的相似性,整个系统可以建模为对如下目标公式进行求解:

image


类似于attention机制,我们提出如下后验概率模型,来对上式进行求解:

image


得到如下梯度并采用端到端方式进行网络学习。

image


试验结果:我们利用业务数据和最新的衣物检索方法进行了对比,试验结果如下表所示。相对于alexnet,Asymnet在前20的检索精确率指标上,其性能几乎提高了进一倍。

相对于其他2种网络CS和RC,我们发现RC的性能略优于CS,因为RC具有较强的识别能力差异较小(采用多任务学习)。甚至在对于某些类别(无明显差别)RC在精确率上甚至略好于AsymNet,但是总的来说AsymNet比目前现有的方法拥有更好的性能。因为Asymnet可以处理现有的视频的时空动态变化,并结合自动视频帧的自动调节炉排判别信息的融合策略。

image

本文出自阿里技术公众号,原文链接

相关文章
|
自然语言处理 搜索推荐 开发者
SmartArXiv——基于OpenSearch LLM智能问答版构建的智能学术论文助手正式发布
本文介绍智能学术论文助手SmartArxiv的架构、应用场景和产品功能。
2342 1
|
6月前
|
云安全 弹性计算 安全
阿里云服务器安全攻略参考:基础防护与云安全产品简介
在使用云服务器的过程中,云服务器的安全问题是很多用户非常关心的问题,阿里云服务器除了提供基础的防护之外,我们也可以选择其他的云安全类产品来确保我们云服务器的安全。本文为您介绍阿里云服务器的基础安全防护机制,以及阿里云提供的各类云安全产品,帮助用户全面了解并选择合适的防护手段,为云上业务保驾护航。
613 11
|
11月前
|
存储 算法 UED
深度解析RAG优化之道:从检索到生成全面升级大模型应用性能,探索提升企业服务质量与用户体验的终极秘密
【10月更文挑战第3天】随着大模型技术的进步,人们愈发关注如何针对特定任务优化模型表现,尤其是在需要深厚背景知识的领域。RAG(Retrieval-Augmented Generation)技术因其能检索相关文档以辅助生成内容而备受青睐。本文将通过问答形式深入探讨RAG优化的关键点,并提供具体实现思路及示例代码。
392 2
|
11月前
|
机器学习/深度学习 算法
深度学习笔记(四):神经网络之链式法则详解
这篇文章详细解释了链式法则在神经网络优化中的作用,说明了如何通过引入中间变量简化复杂函数的微分计算,并通过实例展示了链式法则在反向传播算法中的应用。
448 0
深度学习笔记(四):神经网络之链式法则详解
|
12月前
|
关系型数据库 MySQL 数据安全/隐私保护
docker应用部署---MySQL的部署配置
这篇文章介绍了如何使用Docker部署MySQL数据库,包括搜索和拉取MySQL镜像、创建容器并设置端口映射和目录映射、进入容器操作MySQL,以及如何使用外部机器连接容器中的MySQL。
docker应用部署---MySQL的部署配置
|
存储 API 数据安全/隐私保护
邮箱收不到验证码邮件是什么原因
在互联网应用中,未收到验证码邮件常令人困扰。原因包括:邮件误标为垃圾、邮箱设置不当、发件服务器故障、邮箱地址输入错误,及ISP拦截。解决策略有检查垃圾邮件、清理邮箱、修正设置、确认邮箱地址无误、联系服务提供商与ISP,或尝试其他邮箱服务。使用AOKSend等可靠邮件服务可提升送达率,其优势在于高送达率、实时监测与易集成性,确保验证码邮件及时准确到达,改善用户体验。
|
人工智能 测试技术 UED
论文介绍:ReALM——作为语言建模的参考解析
【4月更文挑战第8天】Apple研究员提出的ReALM框架旨在改善AI在处理上下文信息时的准确性和自然性,特别是对于屏幕内容的理解。通过将参考解析转化为语言建模,ReALM能有效编码和解析屏幕实体,提高智能助手处理用户查询的能力。实验显示,ReALM在处理屏幕、对话和背景实体参考时超越了GPT-3.5和GPT-4。尽管存在挑战,如复杂空间位置理解的局限性,但ReALM为智能助手的交互体验带来了显著提升,且其模块化设计利于升级和维护。
359 2
论文介绍:ReALM——作为语言建模的参考解析
看看FIQ和IRQ
看看FIQ和IRQ
373 0
|
自然语言处理 供应链 Cloud Native
天源迪科与阿里云发布联合解决方案,基于阿里云原生产品打造卓越的数字化采购平台
随着云上时代日益蓬勃,云原生成为企业精益实践的最好“扶手”,助力企业在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。
3370 97
天源迪科与阿里云发布联合解决方案,基于阿里云原生产品打造卓越的数字化采购平台