UniMS-RAG:用于个性化对话的统一多源RAG框架

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: RAG领域已经取得了相当大的发展,这篇论文的是如何分解RAG过程,加入多文件检索、记忆和个人信息等定制化的元素。

大型语言模型(llm)在自然语言任务中表现出色,但在对话系统中的个性化和上下文方面面临挑战。这个研究提出了一个统一的多源检索-增强生成系统(UniMS-RAG),通过将任务分解为知识来源选择、知识检索和响应生成来解决个性化问题。

这个系统包括一个自我改进的机制,这个机制基于响应和检索证据之间的一致性分数迭代地改进生成的响应。实验结果表明,UniMS-RAG在知识来源选择和响应生成任务方面具有先进的性能。

上图展示了两个场景,其中用户和机器人角色是独立的,而在第二个示例中则是相互依赖的。对于相互依赖的方法,需要有评估令牌和代理令牌。

论文要点

1、知识来源选择

智能和准确的知识来源选择和对多个信息来源综合成一个连贯而简洁的答案将变得至关重要。

使用RAG的一个优点是其实现的简单。但是在agenic RAG、多文档搜索和添加会话历史等方面,还需要很多的手动工作。代理RAG是将代理层次结构与RAG实现相结合的地方,这会带来很大的复杂性。

2、个性化与情境

个性化和通过会话历史维护上下文是优秀用户体验的重要元素。UniMS-RAG会对这些元素进行优先排序。

3、持续改进

论文的方法还包括一种自我细化推理算法,通过结合RAG会带来很大程度的可检查性和可观察性。

UniMS-RAG框架

UniMS-RAG统一了计划、检索和阅读任务的训练过程,并将它们集成到一个综合框架中。利用大型语言模型(llm)的力量来利用外部知识来源,UniMS-RAG增强了llm在个性化知识基础对话中无缝连接各种资源的能力。这种集成简化了传统上分离的检索器和训练任务,并允许以统一的方式进行自适应证据检索和相关性评分评估。

下图是所提出的称为UniMS-RAG的方法的说明。

精心设计了三个优化任务:

Knowledge Source Selection:知识来源选择在给定不同来源之间的关系的情况下,创建一系列应该使用哪些特定知识来源的决策的过程。

Relevance Score Prediction:相关性评分预测会根据决策从外部数据库检索前n个结果。

Response Generation:最终将所有检索到的知识合并到最终的响应,生成结果

总结

论文提出的方法可在多源环境中解决个性化的基于知识的对话任务,将问题分解为三个子任务:知识库选择、知识检索和响应生成。提出的统一多源检索-增强对话系统(UniMS-RAG)使用大型语言模型(llm)同时作为计划者、检索者和读者。

这个框架在推理过程中还引入了自改进,使用一致性和相似性分数来改进响应。

在两个数据集上的实验结果表明,UniMS-RAG产生了更加个性化和真实的反应,优于基线模型。

论文地址:

https://avoid.overfit.cn/post/93a42fde82df483d8d64e286eb3a726a

作者:Cobus Greyling

目录
相关文章
|
SQL 人工智能 分布式计算
基于阿里云PAI平台搭建知识库检索增强的大模型对话系统
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
|
9天前
|
人工智能 自然语言处理 搜索推荐
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
ViDoRAG 是阿里巴巴通义实验室联合中国科学技术大学和上海交通大学推出的视觉文档检索增强生成框架,基于多智能体协作和动态迭代推理,显著提升复杂视觉文档的检索和生成效率。
77 8
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
|
17天前
|
存储 人工智能 数据库
面向教育场景的大模型 RAG 检索增强解决方案
检索增强生成模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。以人工智能平台 PAI 为例,为您介绍在云上使用一站式白盒化大模型应用开发平台 PAI-LangStudio 构建面向教育场景的大模型 RAG 检索增强解决方案,应用构建更简便,开发环境更直观。此外,PAI 平台同样发布了面向医疗、金融和法律领域的 RAG 解决方案。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
5月前
|
自然语言处理 Serverless API
基于 EventBridge + DashVector 打造 RAG 全链路动态语义检索能力
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
315 79
|
3月前
|
存储 人工智能 数据库
面向医疗场景的大模型 RAG 检索增强解决方案
本方案为您介绍,如何使用人工智能平台 PAI 构建面向医疗场景的大模型 RAG 检索增强解决方案。
|
8月前
|
JSON 文字识别 算法
使用InternVL、LMDeploy和GTE搭建多模态RAG系统
如何将视觉大模型(VLM)与 多模态RAG 结合起来,创建服装搜索和搭配推荐!本文展示了InternVL模型在分析服装图像和提取颜色、款式和类型等关键特征方面的强大功能。
|
10月前
|
自然语言处理 物联网 API
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
|
5月前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
4月前
|
机器学习/深度学习 存储 自然语言处理
方案测评|巧用文档智能和RAG构建大语言模型知识库
本文介绍了一款基于文档智能和大语言模型(LLM)的文档解析及问答应用,旨在提升企业文档管理和信息检索效率。系统通过文档解析、知识库构建和问答服务三大模块,实现了从文档上传到智能问答的全流程自动化。