YOLOv8改进之更换BiFPN并融合P2小目标检测层

简介: BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。

1. BiFPN


BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。


以下是BiFPN的关键特点和工作原理:


双向连接: BiFPN引入了双向连接,允许信息在不同分辨率级别之间双向传播。这有助于更好地融合低级别和高级别特征,并促进了特征的上下文传播,从而提高了对象检测和分割的准确性。


自适应特征调整: BiFPN采用自适应的特征调整机制,可以学习权重,以调整不同层级的特征以更好地匹配不同任务的需求。这有助于改进特征融合的效果。


模块化设计: BiFPN的模块化设计使其易于嵌入到各种深度神经网络架构中,例如单发射点(Single Shot MultiBox Detector, SSD)、YOLO(You Only Look Once)、以及Mask R-CNN等。


高效性: BiFPN被设计为高效的模型,具有较少的参数和计算复杂度,使其适用于嵌入式设备和实际部署。


提高性能: BiFPN的引入通常能够显著提高对象检测和分割任务的性能,特别是对于小目标或复杂场景,其性能改进尤为显著。


总的来说,BiFPN是一种改进的特征金字塔网络结构,通过双向连接、自适应特征调整和模块化设计,提高了对象检测和语义分割任务的性能,使得神经网络能够更好地理解和解释多尺度信息,从而在计算机视觉任务中发挥更大的作用。


1.1 FPN的演进


物体检测性能提升,一般主要通过数据增强、改进Backbone、改进FPN、改进检测头、改进loss、改进后处理等6个常用手段。



BiFPN的结构图如下所示:



2. YOLOv8改进之更换BiFPN并融合P2小目标检测层


YOLOv8的改进,更换BiFPN(Bi-directional Feature Pyramid Network)并融合P2小目标检测层,具有以下好处:


提高小目标检测准确性: 引入P2小目标检测层使YOLOv8能够更有效地检测小目标物体。小目标通常在图像中占据较少的像素,因此更容易被忽略或误判。通过专门的P2层,YOLOv8能够更敏锐地检测和定位小目标,提高了小目标检测的准确性。


更好的多尺度信息融合: BiFPN的引入允许信息在不同分辨率级别之间双向传播,从而更好地融合多尺度信息。这有助于模型更全面地理解不同大小的目标,提高了对多尺度物体的检测性能。同时,它还改进了对物体的上下文理解,有助于减少误报或漏报。



这里不需要注册,只需要yaml文件即可,代码如下:


# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [4, 1, Conv, [256]]  # 10
  - [6, 1, Conv, [256]]  # 11
  - [9, 1, Conv, [256]]  # 12
  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] 
  - [[-1, 11], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 15
  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] 
  - [[-1, 10], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] 
  - [-1, 1,  nn.Upsample, [None, 2, 'nearest']] #19
  - [2, 1,  Conv, [256]] 
  - [[-1, 19], 1, Concat, [1]]
  - [-1, 3, C2f, [256]] #22
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 10, 18], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 25
  - [-1, 1, Conv, [256, 3, 2]] 
  - [[-1, 11, 15], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 28
  - [-1, 1, Conv, [256, 3, 2]] 
  - [[-1, 12], 1, Concat, [1]] 
  - [-1, 3, C2f, [256]] # 31
  - [[22, 25, 28,31], 1, Detect, [nc]]  # Detect(P2, P3, P4, P5)


相关文章
|
7月前
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
497 4
|
5月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
141 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
7月前
|
编解码 算法 计算机视觉
YOLO特征融合的原理是怎样的?
YOLO特征融合的原理是怎样的?
|
5月前
|
计算机视觉 网络架构
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
|
6月前
|
计算机视觉
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
|
6月前
|
边缘计算 计算机视觉 异构计算
【YOLOv8改进 - 特征融合NECK】Slim-neck:目标检测新范式,既轻量又涨点
YOLO目标检测专栏探讨了模型优化,提出GSConv和Slim-Neck设计,以实现轻量级模型的高效检测。GSConv减小计算复杂度,保持准确性,适合实时任务。Slim-Neck结合GSConv优化架构,提高计算成本效益。在Tesla T4上,改进后的检测器以100FPS处理SODA10M数据集,mAP0.5达70.9%。论文和代码可在提供的链接中获取。文章还介绍了YOLOv8中GSConv的实现细节。更多配置信息见相关链接。
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】
💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8改进 | 融合模块 | 用Resblock+CBAM卷积替换Conv【轻量化网络】
在这个教程中,介绍了如何将YOLOv8的目标检测模型改进,用Resblock+CBAM替换原有的卷积层。Resblock基于ResNet的残差学习思想,减少信息丢失,而CBAM是通道和空间注意力模块,增强网络对特征的感知。教程详细解释了ResNet和CBAM的原理,并提供了代码示例展示如何在YOLOv8中实现这一改进。此外,还给出了新增的yaml配置文件示例以及如何注册模块和执行程序。作者分享了完整的代码,并对比了改进前后的GFLOPs计算量,强调了这种改进在提升性能的同时可能增加计算需求。教程适合深度学习初学者实践和提升YOLO系列模型的性能。
|
7月前
|
机器学习/深度学习 自动驾驶 计算机视觉
YOLOv8改进 | Neck篇 | Slim-Neck替换特征融合层实现超级涨点 (又轻量又超级涨点)
YOLOv8改进 | Neck篇 | Slim-Neck替换特征融合层实现超级涨点 (又轻量又超级涨点)
741 2