Rust 数据类型 之 结构体(Struct)

简介: Rust 数据类型 之 结构体(Struct)

结构体(Struct)

是一种自定义数据类型,允许将多个相关的值组合在一起,形成一个更复杂的数据结构。结构体被广泛应用于组织和管理数据,具有灵活性和强大的表达能力。

定义与声明

结构体定义

在Rust中,定义和声明结构体的语法如下:

struct Name {  
    field1: Type1,  
    field2: Type2,  
    // ...  
    fieldN: TypeN,  
}

其中,Name是结构体的名称,每个数据名及其对应的数据类型组成一个字段,field1fieldN是结构体的字段名称,Type1TypeN是字段的数据类型

通过关键字 struct 定义,指定结构体名称,结构体内用 field:type, 表示字段名称及数据类型,注意rust语言不能在定义的同时进行赋值,且用逗号分隔各字段,不像c/c++用分号

结构体中可以根据需要定义字段个数,理论上要多少就定义多少;但实际上字段太多,结构体也会变得很占空间,对程序的空间效率是个负担。

结构体实例

如以下代码定义了一个名为Point的结构体,包含x和y两个字段,类型分别为i32和f64:

struct Point {
    x: i32,
    y: f64,
}

定义结构体后,可以像使用其他类型一样使用它。例如,可以声明一个Point类型的变量,并为其字段赋值

let my_point = Point { x: 10, y: 20.0 };

使用结构体时,用成员运算符 my_point.x 来调用对应字段的值:

println!("({},{})", point.x, point.y);    // 输出:(10,20)

可变实例

需要变动字段的值,在声明时需要用 let mut,如:

struct Point {  
    x: i32,  
    y: f64,  
}
fn main() {
  let mut point = Point { x: 10, y: 20.0 }; 
  point.x = 5;
    println!("({},{})", point.x, point.y);  // 输出:(5,20)
}

结构体分类

在Rust中,结构体(Struct)可以按照不同的方式进行分类,以下是一些常见的分类方式:

单元结构体(Unit Struct)

这种结构体没有任何字段,它只是用于表示一个空的类型。这种结构体通常用于作为其他结构体的组成部分或返回类型。例如:

struct UnitStruct;

元组结构体(Tuple Struct)

这种结构体包含一组字段,可以通过元组语法来访问每个字段。元组结构体可以用于表示简单的数据集合,不使用大括号{},而是使用元组的小括号()。例如:

struct TupleStruct(i32, String);

相当字段数据没有名称的结构体,访问时使用索引。如:

struct Point (i32, f64);
fn main() {
  let mut point = Point(10, 20.0); 
  point.0 = 5;
    println!("({},{})", point.0, point.1);  
}

具名结构体(Named Struct)

这种结构体有一个显式的名称,并且包含一组字段。具名结构体可以用于表示复杂的数据结构,例如一个包含多个字段的对象,本文的示例大多数都为具名结构体,用法已在本文开头讲过:

struct MyStruct {  
    field1: i32,  
    field2: String,  
    // ...  
}

除了以上三种常见的结构体类型,Rust还支持其他特殊类型的结构体,例如带有泛型参数的结构体、具名元组结构体(Named Tuple Struct)和结构体路径(Struct Type Alias)等。

需要注意的是,在Rust中,结构体的分类并不是强制性的,也就是说,一个结构体可以包含任意类型的字段,并且可以在任何地方使用。这使得结构体非常灵活,可以用于实现各种复杂的数据结构。

结构体字段的数据类型可以是以下常见的rust数据,甚至可以是函数、引用、指针类型。

  1. 标量类型(Scalar Types):
  • 整数类型(Integer Types):包括有符号整数类型和无符号整数类型。常见的整数类型有 i8i16i32i64i128 表示有符号整数,u8u16u32u64u128 表示无符号整数。此外,还有 isizeusize,它们根据平台的位数自动调整大小。
  • 浮点数类型(Floating-Point Number Types):包括 f32f64 两种类型,表示单精度和双精度浮点数。
  • 布尔类型(Boolean Type):只有两个取值,truefalse
  • 字符类型(Character Type):表示单个 Unicode 字符,通常存储为 4 个字节。
  1. 复合类型(Composite Types):
  • 数组类型(Array Types):由相同类型的元素组成的有限集合。可以通过固定长度或动态长度来定义数组。
  • 切片类型(Slice Types):对一个连续的内存块进行引用,可以看作是动态数组。切片类型提供了访问和操作数据的一种高效方式。
  • 元组类型(Tuple Types):一种将多个不同类型的值组合在一起的数据结构,用圆括号和逗号分隔的元素序列表示。元组可以包含不同类型的元素,例如整数、浮点数、布尔值、字符串等。
  • 结构体类型(Struct Types):一种自定义的数据类型,可以包含多个不同类型的字段。结构体可以通过定义来指定其字段和属性。
  • 枚举类型(Enum Types):表示一个可能取多个值的变量。在 Rust 中,枚举类型使用 enum 关键字定义,每个可能的取值都是一个不同的枚举成员。

结构体嵌套

一个结构体可以包含任意类型的字段,当然也包括结构体。

在以下这个例子中,Address 结构体包含了 street、city 和 state 三个字段,而 Person 结构体则包含了 name、age 和 address 三个字段,其中 address 字段的类型是 Address 结构体。

struct Address {  
    street: String,  
    city: String,  
    state: String,  
}  
struct Person {  
    name: String,  
    age: u8,  
    address: Address,  
}

结构体方法

方法(method)是在结构体上定义的功能,可以访问结构体的字段并执行一些操作。使用关键字impl,结构体可以对应一个或多个impl代码块。

例1:结构体转换为字符串描述

struct Student {
    name:String,
    age:u32,
    school:String,
    major:String,
    grade:String,
    state:bool
}
impl Student {  
    fn to_string(&self) -> String {  
        format!("Student {{ name: {}, age: {}, school: {}, major: {}, grade: {}, state: {} }}", 
            self.name, self.age, self.school, self.major, self.grade, self.state)  
    }  
} 
fn main() {
    let school = String::from("东南大学");
    let major = String::from("土木工程学院");
    let s = Student{
        name:String::from("杨程"),
        age:22,
        school,
        major,
        grade:String::from("大三"),
        state:true
    };
    println!("{}", s.to_string());
}

输出:

Student { name: 杨程, age: 22, school: 东南大学, major: 土木工程学院, grade: 大三, state: true }

注意:上例中有一个rust结构体的特殊用法,使用同名变量在结构体外为对应字段赋值。

例2:矩形的周长和面积

struct Rectangle {  
    width: f32,  
    height: f32,  
}  
impl Rectangle {  
    // 构造函数  
    fn new(width: f32, height: f32) -> Rectangle {  
        Rectangle { width, height }  
    }  
    // 计算矩形的面积  
    fn area(&self) -> f32 {  
        self.width * self.height  
    }  
    // 计算矩形的周长  
    fn perimeter(&self) -> f32 {  
        (self.width + self.height) * 2.0
    }  
}
impl Rectangle {  
    // 判断矩形是否相等  
    fn is_equal(&self, other: &Rectangle) -> bool {  
        self.width == other.width && self.height == other.height  
    }  
}  
fn main() {  
    let rect1 = Rectangle::new(5.0, 6.0);  
    let rect2 = Rectangle::new(5.0, 6.0);  
    println!("Rectangle 1 area: {}", rect1.area());  
    println!("Rectangle 1 perimeter: {}", rect1.perimeter());  
    println!("Rectangle 2 area: {}", rect2.area());  
    println!("Rectangle 2 perimeter: {}", rect2.perimeter());  
    if rect1.is_equal(&rect2) {  
        println!("Rectangles are equal");  
    } else {  
        println!("Rectangles are not equal");  
    }  
}

输出:

Rectangle 1 area: 30

Rectangle 1 perimeter: 22

Rectangle 2 area: 30

Rectangle 2 perimeter: 22

Rectangles are equal

例3:结构体字段的更新与输出

struct Person {  
    name: String,  
    age: u32,  
}  
impl Person {  
    // 这是构造函数,用于创建一个新的 Person 实例  
    fn new(name: String, age: u32) -> Person {  
        Person { name, age }  
    }  
    fn say_hello(&self) {  
        println!("Hello, my name is {} and I'm {}.", self.name, self.age);  
    }  
    fn update_age(&mut self, new_age: u32) {  
        self.age = new_age;  
    } 
    fn update_name(&mut self, new_name: String) {  
        self.name = new_name;  
    }  
}  
fn main() {  
    // 创建一个新的 Person 实例  
    let mut person = Person::new("Tom".to_string(), 5);  
    // 调用 say_hello 方法,输出 Person 的信息  
    person.say_hello();  
    // 调用 update_age 方法,更新 Person 的年龄  
    person.update_age(3);  
    // 再次调用 say_hello 方法,输出更新后的信息  
    person.say_hello(); 
    person.update_age(5);
    person.update_name(String::from("Jerry"));  
    person.say_hello();  
}

输出:

Hello, my name is Tom and I'm 5.

Hello, my name is Tom and I'm 3.

Hello, my name is Jerry and I'm 5.

关联函数

之所以"结构体方法"不叫"结构体函数"是因为"函数"这个名字留给了这种函数:它在 impl 块中却没有 &self 参数。这种函数不依赖实例,但是使用它需要声明是在哪个 impl 块中的,比如上小节例2和例3中的构造函数new()就是关联函数,类似于字符串函数String::new(),String::from("Jerry")。

示例:

#[derive(Debug,Clone)]
struct Rectangle {
    width: u32,
    height: u32,
}
impl Rectangle {
    fn create(width: u32, height: u32) -> Rectangle {
        Rectangle { width, height }
    }
    fn area(self) -> u32 {
        self.width * self.height
    }
    fn area2(&self) -> u32 {
        self.width * self.height
    }
}
fn main() {
    let rect = Rectangle::create(30, 50);
    println!("{:?}", rect);
    println!("Area: {}", Rectangle::area(rect.clone()));
    println!("Area: {}", rect.area2());
}

输出:

Rectangle { width: 30, height: 50 }

Area: 1500

Area: 1500

结构体方法与关联函数的区别

参数传递方式的区别

结构体方法:结构体方法默认情况下是可变的(mutable),也就是说可以修改结构体的字段。在调用方法时,可以通过引用(&self)或可变引用(&mut self)来传递结构体实例,以便修改其字段。例如:my_struct.my_method(&mut my_struct)。

关联函数:关联函数默认情况下是不可变的(immutable),也就是说无法修改结构体的字段。在调用函数时,只能通过常量引用(&self)来传递结构体实例,因为常量引用是只读的。例如:let my_struct = MyStruct {...}; my_struct.my_function()。

使用方式的区别

结构体方法:结构体方法可以直接在结构体实例上调用,无需显式传递结构体实例。例如:my_struct.my_method()。

关联函数:关联函数需要显式传递结构体实例作为参数。例如:MyStruct::my_function(my_struct)。

结构体的trait

Rust 中的 trait 是一种抽象类型,用于定义泛型行为,trait 可以理解为一种接口。trait 使用关键字 derive 来自动生成实现。通过使用 derive,可以避免手动编写冗长的代码,提高代码的可读性和可维护性。trait 有很多,比如Copy,Clone,Debug,Default,Drop,Hash,Ord,PartialOrd,Send,Sync等等,先挑几种最常用的学一下:

#[derive(Debug)]

在 Rust 语言中用于自动生成一个结构体的 Debug 实现,Debug 是 Rust 标准库中的一个 trait,用于在控制台打印调试信息。

使用 #[derive(Debug)] 属性可以为结构体自动生成一个 Debug 实现,这样在需要打印调试信息时,就可以使用 {:?} 格式化字符串来打印该结构体的内容。例如,在上面的代码中,s 结构体的 Debug 实现已经被自动生成,因此可以使用 println!("{:?}", s) 来打印出结构体 s 的内容。

例1:
#[derive(Debug)]
struct Point {
    x: i32,
    y: i32,
}
impl Point {
    fn distance(&self, other: &Point) -> f32 {
        let x_diff = self.x - other.x;
        let y_diff = self.y - other.y;
        ((x_diff * x_diff + y_diff * y_diff) as f32).sqrt()
    }
}
fn main() {
    let p1 = Point { x: 3, y: 0 };
    let p2 = Point { x: 0, y: 4 };
    println!("Distance between {:?} and {:?} is {}.", p1, p2, p1.distance(&p2));
}

输出:

Distance between Point { x: 3, y: 0 } and Point { x: 0, y: 4 } is 5.

例2:
#[derive(Debug)]
struct Student {
    name: String,
    age: u32,
    school: String,
    major: String,
    grade: String,
    state: bool,
}  
impl Student {
    fn new() -> Student {
        return Student {
            age: 0,
            name: String::new(),
            school: String::from(""),
            major: "".to_string(),
            grade: "".to_string(),
            state: false,
        };
    }
}
fn main() {  
    let mut s = Student::new();
    s.name = String::from("杨程");
    s.age = 22;
    s.school = String::from("东南大学");
    s.major = String::from("土木工程学院");
    s.grade = String::from("大三");
    s.state = true;
    println!("{:?}", s);
}

输出:

Student { name: "杨程", age: 22, school: "东南大学", major: "土木工程学院", grade: "大三", state: true }

与上一小节的例2对比,输出内容基本一致,就多了String的引号标记。相比自动生成 Debug 实现可以简化代码编写过程,并且可以避免手动实现 Debug 时可能出现的错误。

在本例中,使用宏打印结构体println!("{:?}", s);时,第一行的代码#[derive(Debug)]是必须的,如果去掉就会报错:

error[E0277]: `Student` doesn't implement `Debug`

 --> E:\.rs\struct2.rs:31:22

  |

31 |     println!("{:?}", s);

  |                      ^ `Student` cannot be formatted using `{:?}`

  |

  = help: the trait `Debug` is not implemented for `Student`

  = note: add `#[derive(Debug)]` to `Student` or manually `impl Debug for Student`

  = note: this error originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)

help: consider annotating `Student` with `#[derive(Debug)]`

  |

1  + #[derive(Debug)]

2  | struct Student {

  |

error: aborting due to previous error

自定义打印宏

1. impl fmt::Debug for Student

返回值:fmt::Result; 调用:println!("{:?}", s);

use std::fmt;
struct Student {
    name: String,
    age: u32,
    school: String,
    major: String,
    grade: String,
    state: bool,
}  
impl fmt::Debug for Student {  
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f,
               "Student {{ name: {}, age: {}, school: {}, major: {}, grade: {}, state: {} }}",
               self.name, self.age, self.school, self.major, self.grade, self.state)
    }  
}  
fn main() {  
    let school = String::from("东南大学");
    let major = String::from("土木工程学院");
    let s = Student {
        name: String::from("杨程"),
        age: 22,
        school,
        major,
        grade: String::from("大三"),
        state: true,
    };  
    println!("{:?}", s);
}

输出:

Student { name: 杨程, age: 22, school: 东南大学, major: 土木工程学院, grade: 大三, state: true }  

2. impl fmt::Display for Student

返回值:fmt::Result; 调用:println!("{}", s); {}里不需要:?

use std::fmt;
struct Point {
    x: i32,
    y: i32,
}
impl fmt::Display for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({}, {})", self.x, self.y)
    }
}
impl Point {
    fn distance(&self, other: &Point) -> f32 {
        let x_diff = self.x - other.x;
        let y_diff = self.y - other.y;
        ((x_diff * x_diff + y_diff * y_diff) as f32).sqrt()
    }
}
fn main() {
    let p1 = Point { x: 3, y: 0 };
    let p2 = Point { x: 0, y: 4 };
    println!("Distance between {} and {} is {}.", p1, p2, p1.distance(&p2));
}

输出:

Distance between Point(3, 0) and Point(0, 4) is 5.

输出要与使用#[derive(Debug)]时一样,只要修改write宏的第2个参数,如:

impl fmt::Display for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Point {{ x: {}, y: {} }}", self.x, self.y)
    }
}

#[derive(PartialEq)]

使用#[derive(PartialEq)]为结构体自动实现了PartialEq trait。这使得可以直接使用==运算符比较两个结构体实例的相等性。

例1:
#[derive(PartialEq)]
struct Point {  
    x: i32,  
    y: i32,  
}
fn main() {
  let point1 = Point { x: 10, y: 20 };  
  let point2 = Point { x: 10, y: 20 };  
  if point1 == point2 {  
      println!("The two points are equal.");  
  } else {  
      println!("The two points are not equal.");  
  }
}

输出:

The two points are equal.

例2:
#[derive(Debug, PartialEq)]
struct Person {
    name: String,
    age: u32,
}
fn main() {
    let person1 = Person {
        name: String::from("Alice"),
        age: 25,
    };
    let person2 = Person {
        name: String::from("Bob"),
        age: 30,
    };
    let person3 = Person {
        name: String::from("Alice"),
        age: 25,
    };
    println!("Is {:?} equal to {:?}? {}", person1, person2, person1 == person2);
    println!("Is {:?} equal to {:?}? {}", person1, person3, person1 == person3);
}

输出:

Is Person { name: "Alice", age: 25 } equal to Person { name: "Bob", age: 30 }? false

Is Person { name: "Alice", age: 25 } equal to Person { name: "Alice", age: 25 }? true

#[derive(Default)]

调用#[derive(Default)],相当于创建一个默认的结构体实例,每一个字段都是对应数据类型的默认值,无需手动为每个字段设置默认值。

例1:
#[derive(Default,Debug)]
struct Circle {
    radius: f32,
}  
impl Circle {
    fn area(&self) -> f32 {
        let pi = std::f32::consts::PI;
        pi * self.radius * self.radius
    }
}
fn main() {
    let mut c = Circle::default();
    println!("Circular area of {:?} = {}.", c, c.area());
    c.radius = 1.0;
    println!("Circular area of {:?} = {}.", c, c.area());
}

输出:

Circular area of Circle { radius: 0.0 } = 0.

Circular area of Circle { radius: 1.0 } = 3.1415927.

例2:
#[derive(Debug, Default)]
struct Student {  
    name: String,  
    age: u32,  
    school: String,  
    major: String,  
    grade: String,  
    state: bool,  
}  
fn main() {  
    let mut s1 = Student::default(); 
    println!("{:?}", s1);
    s1.name = String::from("杨程");  
    s1.age = 22;  
    s1.school = String::from("东南大学");  
    s1.major = String::from("土木工程学院");  
    s1.grade = String::from("大三");  
    s1.state = true;  
    println!("{:?}", s1);  
    let s2 = Student {  
        age: 23,  
        grade: String::from("大四"),  
        ..s1  //注意这里的结构体更新语法
    };  
    println!("{:?}", s2);  
}

输出:

Student { name: "", age: 0, school: "", major: "", grade: "", state: false }

Student { name: "杨程", age: 22, school: "东南大学", major: "土木工程学院", grade: "大三", state: true }

Student { name: "杨程", age: 23, school: "东南大学", major: "土木工程学院", grade: "大四", state: true }

此例还有一个rust结构体的特殊用法,当结构体大部分字段需要被设置成与现存的另一个结构体的一样,仅需更改其中的一两个字段的值,可以使用结构体更新语法,在现存的结构体名前加上两个连续的句号:“..Struct_Name”。

#[derive(Clone)]

Clone 在复制过程中对所有字段进行逐个复制,包括所有引用类型和原始类型。这意味着每次进行克隆时,都会创建新的数据副本。

示例:

#[derive(Clone)]
struct Person {  
    name: String,  
    age: i32,  
}  
fn main() {  
    let mut person1 = Person { name: String::new(), age: 0 };  
    let mut person2 = person1.clone();
    person1.name = "Alice".to_string();
    person1.age = 22;
    println!("Person 1: {}, {}", person1.name, person1.age);
    println!("Person 2: {}, {}", person2.name, person2.age);
    person2 = person1.clone();
    println!("Person 2: {}, {}", person2.name, person2.age);
}

输出:

Person 1: Alice, 22

Person 2: , 0

Person 2: Alice, 22

其他相关内容

模式匹配

结构体可用 模式匹配(Pattern Matching)来解构和访问其字段。

例1:
struct Point {
    x: i32,
    y: i32,
}
fn main() {
    let p = Point { x: 10, y: 20 };
    match p {
        Point { x, y } => {
            println!("x:{}, y: {}", x, y);
        }
    }
}
例2:
struct Time {  
    hour: i32,  
    minute: i32,  
    second: i32,  
}  
fn main() {  
    let t = Time { hour: 10, minute: 30, second: 45 };  
    match t {  
        Time { hour, minute, second } => {  
            print!("The time is {}:", hour);
            println!("{}:{}", minute, second);  
        }  
    }  
}

结构体大小

结构体的大小在C/C++中使用运算符 sizeof 来计算;在Rust语言中,则使用标准库中的一个模块std::mem::中的size_of和size_of_val,它提供了与内存管理相关的函数。

1. std::mem::size_of

用于计算给定类型的大小,不接受任何参数。这个函数返回一个给定类型的大小(以字节为单位)。它是一个泛型函数,可以用于任何类型。

示例:

#![allow(dead_code)]
struct Point {
    x: i32,
    y: i32,
}  
struct Person {
    name: String,
    age: i32,
    height: f32,
    is_employed: bool,
}  
fn main() {
    let point = Point { x: 10, y: 20 };  
    println!("Size of Point: {}", std::mem::size_of::<Point>());
    let person = Person {
        name: "Hann Yang".to_string(),
        age: 50,
        height: 1.72,
        is_employed: true,
    };  
    println!("Size of Person: {}", std::mem::size_of::<Person>());
}

输出:

Size of Point: 8

Size of Person: 40

2. std::mem::size_of_val

用于计算给定值的大小,接受一个值作为参数。它用于获取一个值的大小(以字节为单位)。与 size_of 函数不同的是,size_of_val 函数可以用于任何值,而非类型。

示例:

#![allow(dead_code)]
struct Point {
    x: i32,
    y: i32,
}  
struct Person {
    name: String,
    age: i32,
    height: f32,
    is_employed: bool,
}  
fn main() {
    let point = Point { x: 10, y: 20 };  
    println!("Size of Point: {}", std::mem::size_of_val(&point));
    let person = Person {
        name: "Hann Yang".to_string(),
        age: 50,
        height: 1.72,
        is_employed: true,
    };  
    println!("Size of Person: {}", std::mem::size_of_val(&person));
}

输出:

Size of Point: 8

Size of Person: 40

注意:在这两个例子中,计算类型大小和值大小的结果都是相同的,因为这里没有涉及到指针或其他复杂的情况。


本文总结

结构体是Rust中一种重要的数据结构,用于组织不同类型的字段。以下是结构体的重点内容的总结:

  • 结构体定义:使用struct关键字来定义结构体,结构体可以包含多个字段,每个字段可以有不同的类型。
  • 结构体实例:定义一个结构体后,可以使用结构体名称来创建结构体实例,通过.运算符来访问结构体字段。
  • 结构体分类:结构体可以分为三种类型:单元结构体(())、元组结构体(用逗号分隔的多个字段)和具名结构体(有自定义名称的字段)。
  • 结构体嵌套:结构体可以嵌套,用于组织和存储复杂的数据。
  • 结构体方法:结构体可以定义方法,用于在结构体上执行操作。结构体方法与关联函数类似,但只能在结构体上调用。
  • 关联函数:通过impl关键字在结构体上定义关联函数,用于在结构体实例上执行特定操作。关联函数可以是普通函数或方法。
  • 自定义打印宏:使用derive(Debug)]来自动实现fmt::Debug trait,实现自定义的打印输出格式。
  • 其他相关内容:结构体可以通过derive属性来自动实现其他trait,如PartialEq(部分相等性)、Default(默认值)和Clone(克隆)。
  • 结构体大小:在Rust中,结构体的内存大小是固定的,可以在定义时指定大小,也可以使用#[repr(C)]来指定大小和布局。
  • 模式匹配:可以使用模式匹配来访问和匹配结构体的字段,这使得在编写代码时更加灵活和方便。

总的来说,结构体是Rust中非常强大和灵活的数据结构,可以用于组织和操作各种类型的数据。通过使用结构体、方法、关联函数和其他相关特性,可以轻松地实现复杂的数据结构和算法。

目录
相关文章
|
5月前
|
存储 Rust 程序员
Rust中数据类型详解:从整数到字符串
本文将详细解析Rust编程语言中的基本数据类型,包括整数、浮点数、布尔值、字符与字符串。我们将深入探讨每种数据类型的特性、使用场景以及它们在Rust中的实现方式,帮助读者更好地理解和应用这些基础元素。
|
19天前
|
Rust 索引
【Rust学习】08_使用结构体代码示例
为了了解我们何时可能想要使用结构体,让我们编写一个计算长方形面积的程序。我们将从使用单个变量开始,然后重构程序,直到我们改用结构体。
56 2
|
21天前
|
存储 Rust 编译器
【Rust学习】07_结构体说明
**struct**或 ***structure***是一种自定义数据类型,允许您命名和包装多个相关的值,从而形成一个有意义的组合。如果您熟悉面向对象的语言,那么**struct**就像对象中的数据属性。在本章中,我们将比较和对比元组与结构体,在您已经知道的基础上,来演示结构体是对数据进行分组的更好方法。
18 1
|
2月前
|
Rust Java C++
30天拿下Rust之结构体
在Rust语言中,结构体是一种用户自定义的数据类型,它允许你将多个相关的值组合成一个单一的类型。结构体是一种复合数据类型,可以用来封装多个不同类型的字段,这些字段可以是基本数据类型、其他结构体、枚举类型等。通过使用结构体,你可以创建更复杂的数据结构,并定义它们的行为。
38 2
|
4月前
|
存储 Rust 程序员
Rust结构体详解:定义、使用及方法
Rust结构体详解:定义、使用及方法
|
4月前
|
Rust 安全
Rust变量、常量声明与基本数据类型
Rust变量、常量声明与基本数据类型
|
5月前
|
Rust 安全 算法
【深入探索Rust:结构体、枚举与模式匹配】A Deep Dive into Rust: Structs, Enums, and Pattern Matching
【深入探索Rust:结构体、枚举与模式匹配】A Deep Dive into Rust: Structs, Enums, and Pattern Matching
82 0
【深入探索Rust:结构体、枚举与模式匹配】A Deep Dive into Rust: Structs, Enums, and Pattern Matching
|
5月前
|
存储 Rust 自然语言处理
Rust 基础语法和数据类型
Rust 基础语法和数据类型
78 0
|
5月前
|
存储 Rust 编译器
Rust变量与数据类型
Rust变量与数据类型
|
5月前
|
存储 Rust 开发者
【Rust】——结构体struct
【Rust】——结构体struct