CodeFuse新开源模型荣登Big Code评测榜首!

简介: 使用多任务高效微调框架MFTCoder,以DeepSeek-Coder-33b模型为底座,微调获得的CodeFuse-DeepSeek-33b模型在Big Code Models Leaderboard代码大模型榜单上以43.58% WinRate成为新晋榜首,同时模型在NLP任务上也取得了很好的表现。本文我们将介绍该模型的得来和使用,包括训练数据、训练超参设置、模型评测效果以及如何获取该模型和基于它继续微调。我们已经在HuggingFace和ModelScope开放了模型下载(下载地址在文末),并同步提供了4bit量化版本供大家直接部署到生产环境。

image.png

使用多任务高效微调框架MFTCoder,以DeepSeek-Coder-33b模型为底座,微调获得的CodeFuse-DeepSeek-33b模型在Big Code Models Leaderboard代码大模型榜单上以43.58% WinRate成为新晋榜首,同时模型在NLP任务上也取得了很好的表现。本文我们将介绍该模型的得来和使用,包括训练数据、训练超参设置、模型评测效果以及如何获取该模型和基于它继续微调。我们已经在HuggingFace和ModelScope开放了模型下载(下载地址在文末),并同步提供了4bit量化版本供大家直接部署到生产环境。

image.png

图1: Big Code Models LeaderBoard榜单截图(截取时间2024-01-30)。Big Code Models Leaderboardhttps://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)是由HuggingFace BigCode团队维护的代码大模型榜单,是代码大模型领域比较权威的评测榜单。


多任务微调MFT

我们选择以DeepSeek-Coder-33b模型为底座,使用多任务微调框架MFTCoder对5个下游任务数据进行微调,得到CodeFuse-DeepSeek-33b模型。以下将更为详细地进行介绍。


训练数据

本次训练我们设置了5个下游任务,如下表1所示,包括代码补全任务、文本生成代码任务、单测生成任务、自然语言表述对齐任务和代码练习题任务,共约168万样本数据。得益于我们开源的多任务微调框架MFTCoder,这些下游任务能一定程度上相互促进,比直接将所有任务数据混合为一后微调表现更优。

表1: 下游任务训练数据统计

序号

MFT下游任务

任务能力

#Samples 

1

单测用例生成

给定函数级代码生成单元测试用例

390,393

2

代码补全

根据前文补全代码(方法级)

192,547

3

文本生成代码

基于文本描述生成功能代码

66,862

4

NLP表述对齐

增强NLP理解能力

951,278

5

代码练习题 (JAVA/CPP/GO)

基于文本描述生成基础功能代码

82,603

#Total

1,683,683


关键超参设置

本次微调使用的是我们已经开源的多任务微调框架MFTCoder(https://github.com/codefuse-ai/MFTCoder/tree/main/mftcoder_accelerate),MFTCoder支持多模型适配(包括Llama 1/2、CodeLlama、Qwen、Baichuan 2、ChatGLM 2/3、CodeGeex 2、GPT-NEOX、Mistral、DeepSeek等)、多任务并行、多种均衡Loss设计、PEFT(Lora和QLora)高效微调,此前已被采纳为Qwen Code AI竞赛初赛推荐微调框架(https://tianchi.aliyun.com/competition/entrance/532169/information)。本次训练使用的关键超参设置如下表2所示,更多详细的参数说明可参考https://github.com/codefuse-ai/MFTCoder/tree/main/mft_peft_hf#32-loraqlora

表2: MFTCoder微调关键超参设置及解释

参数名称

参数值

简要解释

data_split

"98,2,0"

98%数据用于训练,2%用于验证

padding_mode

"padding"

使用动态填充模式,即每张卡每个batch大小是由每次其中的最长者动态决定而不是固定大小。另一种可选数据模式是"pack"。

dynamic_padding

True

weighted_loss_mode

"case3"

使用数据均衡Loss函数,更多细节可见论文https://arxiv.org/abs/2311.02303

peft_type

"qlora"

采取QLora 4bit量化微调模式

quantization

"4bit"

lora_rank

192

决定可训练参数比例

lora_alpha

32

per_device_train_batch_size

4

训练时单卡batch大小

per_device_eval_batch_size

4

验证时单卡batch大小

learning_rate

5e-5

初始学习率

min_lr

1e-6

最小学习率

gradient_accumulation_steps

1

梯度累积步数,如果为2,则每累积2步再更新参数,资源不足是一种间接增加global batch size的方式

world_size

64

GPU卡数,使用64张A100/A100卡

evalation_steps

500

每500步验证一次

checkpointing_steps

500

每500步保存一次检查点

num_train_epochs

10

最大训练轮数,最大10轮

early_stopping

True

开启early-stopping机制,即当连续3个检查点的eval loss均比倒数第4个检查点的eval loss大时终止训练

early_stopping_stall_num

3

使用前述训练数据和配置,经过156.5小时,模型在完成5.09 Epochs训练后触发Early-Stopping策略后终止。


模型效果

我们从代码能力和NLP能力两个方面对训练获得的CodeFuse-DeepSeek-33b进行了测试,pass@1测试均采用greedy解码模式(即doSample=False, num_beams=1, num_return_sequences=1)。


代码能力

我们选取了常用的代码评测集对模型进行评测,首先我们使用自己的CodeFuse-Evaluation评测框架(https://github.com/codefuse-ai/codefuse-evaluation)对模型在HumanEval-X(含HumanEval)和MBPP测试集上的表现进行了测试并与CodeFus此前微调过的模型进行了比较,如下表3和表4所示。

CodeFuse-DeepSeek-33b在HumanEval上pass@1指标值为78.65%、在MBPP上为71%(zero-shot),两项平均为74.83%,略高于DeepSeek-Coder-Instruct-33B

CodeFuse-DeepSeek-33b在多语言评测集HumanEval-X上pass@1指标值平均为67.07%,比此前我们开放的CodeFuse-CodeLlama-34b模型高6.69%,在具体各种语言上高出3.48%~12.19%不等

表3: CodeFuse-DeepSeek-33b模型与其他开源底座模型及微调模型在HumanEval和MBPP上的对比

image.png


表4: CodeFuse-DeepSeek-33b模型与其他开源底座模型及MFT微调模型在HumanEval-X上的对比

image.png

由于不同评测框架在代码后处理和生成终止条件(Stop Words)等方面常存在差异,除了用我们自己的CodeFuse-Evaluation评测框架,我们也用代码大模型榜单Big Code Models LeaderBoard所用的开源评测框架bigcode-evaluation-harness (https://github.com/bigcode-project/bigcode-evaluation-harness)进行了评测,并与榜单上的模型进行了比较。榜单会测试模型在Python代码补全测试集HumenEval和多语言代码补全测试集MultiPL-E共12种语言上的表现,并根据各语言表现进行WinRate排序。(结果复现代码地址:https://github.com/twelveand0/bigcode-evaluation-harness

表5: 采用bigcode-evaluation-harness评测CodeFuse-DeepSeek-33b模型后的新榜单

image.png

如表5所示,CodeFuse-DeepSeek-33b模型的WinRate为43.58%,超过原榜首DeepSeek-Coder-33b-instruct。在HumanEval评测集上,CodeFuse-DeepSeek-33b表现不如DeepSeek-Coder-33b-instruct,但在其他8种语言(包括Java和JS等)上超过后者,均值(Average Score)亦超过后者1.7%


NLP通用能力

对于NLP通用能力测试,我们参照OpenCompass选择了18个评测集,包括语言能力(AFQMC、CHID、Wic、WSC)、推理能力(COPA、CMNLI、OCNLI、Ax-b、Ax-g、RTE)、理解能力(CSL、C3、EPRSTMT)、学科综合能力(MMLU、C-Eval、ARC-c)、代码能力(HumanEval、MBPP)。对于每个模型,我们会使用生成式和PPL方式计算每个指标,并在每个维度上选取两种方式中较高的值作为指标值。

image.png

图2: CodeFuse-DeepSeek-33b NLP通用能力雷达图

CodeFuse-DeepSeek-33b模型的评测结果如图3雷达图所示,我们将其与底座模型DeepSeek-Coder-33b和DeepSeek通用模型DeepSeek-67b-Chat进行了对比。从图中可以看出,相较于底座模型DeepSeek-Coder-33b,CodeFuse-DeepSeek-33b在所有维度上均有正向提升;相较于我们此前开源的CodeFuse-CodeLlama-34b,CodeFuse-DeepSeek-33b在绝大多数维度上表现更优;相较于通用模型DeepSeek-67b-Chat,CodeFuse-DeepSeek-33b在语言能力、代码能力和理解能力上整体表现更优,在推理能力上表现稍差,在学科综合能力上差距较大。考虑到模型参数规模差距和底座目标功能类型差异,我们认为CodeFuse-DeepSeek-33b已经表现很好。


模型INT4量化

为了便于直接部署投入生产,我们同步提供了CodeFuse-DeepSeek-33b-INT4量化版本。对于量化后的模型,我们测试了它的代码能力,如表5所示,量化后模型在代码补全任务上只有微弱降幅。

表5:模型量化前后在HumanEval-X和MBPP上的指标对比

Model

HumanEval-X

MBPP

Python

Java

C++

JS

Go

CodeFuse-DeepSeek-33b

78.65%

67.68%

65.85%

67.07%

56.10%

71.0%

CodeFuse-DeepSeek-33b-INT4

78.05%

68.29%

62.19%

64.63%

55.49%

此外,我们测试了该模型实际部署后的性能。测试环境为单张A10(24G显存)、部署框架为NVIDIA开源的tensorRT。测试结果具体如表6所示:

表6: CodeFuse-DeepSeek-33b-INT4在单张A10的推理性能

模型版本

CodeFuse-DeepSeek-33b

推理速度指标

Tokens/s

模型并行/gpu型号

单卡A10

量化格式

int4  


输入/输出长度
(batch_size=1)

16/8

21.7

64/32

21.5

256/128

21.1

1024/512

20.5



模型下载试用

我们开放了量化前后2个模型的下载,提供了推理格式和推理示例,并说明了如何在此基础上继续微调。


下载

我们已经将2个模型(CodeFuse-DeepSeek-33b和CodeFuse-DeepSeek-33b-INT4)发布到HuggingFace和ModelScope社区,大家可以选择通过以下链接下载:


推理格式与代码

CodeFuse-DeepSeek-33b使用的推理格式如下:

<s>system
{THIS IS YOUR SYSTEM PROMPT}
<s>human
{THIS IS YOUR PROMPT of ROUND 1}
<s>bot
{THIS IS MODEL's RESPONSE of ROUND 1}
<s>human
{THIS IS YOUR PROMPT of ROUND 2}
<s>bot

在这个格式中,sysem部分是可选的,对话轮数可以是多轮的也可以是单轮的。下面是一些具体的案例展示:

<s>human
请写一个快排程序
#Python
<s>bot
<s>system
你是CodeFuse,你会被给定一个任务,你必须按照用户的要求完成任务。
<s>human
请写一个快排程序
#Python
<s>bot
下面是一个使用Python编写的快速排序算法的示例代码:
```python
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)
# 测试快速排序算法
arr = [3, 6, 8, 10, 1, 2, 1]
print(quick_sort(arr))
```
这段代码定义了一个`quick_sort`函数,它接受一个列表作为参数,并返回排序后的列表。在函数内部,首先判断列表的长度是否小于等于1,如果是,则直接返回列表本身。否则,选择列表中间的元素作为基准值,并将列表分成三个部分:小于基准值的部分、等于基准值的部分和大于基准值的部分。然后,对这三个部分分别递归调用`quick_sort`函数进行排序,最后将排序后的三个部分合并并返回。
通过这个示例,你可以了解到如何使用Python编写快速排序算法,并对其进行测试。
<s>human
请为以上代码生成单测用例
<s>bot


下面是一段示例的推理代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"
def load_model_tokenizer(model_path):
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    tokenizer.eos_token = "<|end▁of▁sentence|>"
    tokenizer.pad_token = "<|end▁of▁sentence|>"
    tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
    tokenizer.padding_side = "left"
    model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
    return model, tokenizer
HUMAN_ROLE_START_TAG = "<s>human\n"
BOT_ROLE_START_TAG = "<s>bot\n"
text_list = [f'{HUMAN_ROLE_START_TAG}Write a QuickSort program\n#Python\n{BOT_ROLE_START_TAG}']
model, tokenizer = load_model_tokenizer(model_dir)
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
generation_config = GenerationConfig(
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        temperature=0.1,
        max_new_tokens=512,
        num_return_sequences=1,
        num_beams=1,
        top_p=0.95,
        do_sample=False
)
outputs = model.generate(
        inputs= input_ids,
        attention_mask=attention_mask,
        **generation_config.to_dict()
)
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text[0])


继续微调

如果你想在这两个模型基础上继续微调,欢迎使用我们开源的多任务高效微调框架MFTCoder(https://github.com/codefuse-ai/MFTCoder/tree/main/mftcoder_accelerate)。要继续微调,你需要准备好训练数据集(CodeFuse-ChatML格式)、设置训练配置文件、设置运行配置文件并启动训练。这里提供一个对Qwen-1.8模型用MFTCoder进行微调的案例供参考:https://github.com/codefuse-ai/MFTCoder/tree/codeqwen_competition/mft_peft_hf


联系我们

MFTCoder已经开源,本文中提到的模型和数据集也在陆续开源中,如果您喜欢我们的工作,欢迎试用、指正错误和贡献代码,可以的话请给我们的项目增加Star以支持我们。

目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 存储
百川智能发布超千亿大模型Baichuan 3,中文评测超越GPT-4
百川智能发布大语言模型Baichuan 3,参数超千亿,表现出色。在CMMLU、GAOKAO等中文任务评测中超越GPT-4,且在MATH、HumanEval等专项评测中证明其自然语言处理和代码生成实力。Baichuan 3在医疗领域,如MCMLE、MedExam等评测中成绩突出,成为中文医疗任务的最佳模型。此外,它通过“迭代式强化学习”提升语义理解和生成能力,诗词创作能力远超其他模型。Baichuan 3的推出标志着百川智能在大模型技术上的新里程碑。
31 0
|
3天前
|
数据采集 人工智能 PyTorch
极智AI | 昇腾CANN ATC模型转换
大家好,我是极智视界,本文介绍一下 昇腾 CANN ATC 模型转换。
169 0
|
3天前
|
人工智能 自然语言处理 搜索推荐
AI日报:Anthropic推出商业友好型Claude 3人工智能模型
AI日报:Anthropic推出商业友好型Claude 3人工智能模型
38 0
|
3天前
|
人工智能 自然语言处理 开发者
Stability AI & VAST 强强联手推出开源单图生成3D模型TripoSR
【2月更文挑战第15天】Stability AI & VAST 强强联手推出开源单图生成3D模型TripoSR
60 1
Stability AI & VAST 强强联手推出开源单图生成3D模型TripoSR
|
3天前
|
人工智能
【2024美赛】在COMAP比赛中使用大型语言模型和生成式AI工具的政策Use of Large Language ModelGenerative AI Tools in COMAP Contests
【2024美赛】在COMAP比赛中使用大型语言模型和生成式AI工具的政策Use of Large Language ModelGenerative AI Tools in COMAP Contests
35 1
|
8月前
|
自然语言处理 测试技术 编译器
社区供稿 | 姜子牙大模型开源代码大模型Ziya-Coding-34B-v1.0 再创榜单新高,魔搭开源可体验!
使用自然语言生成高质量的代码是大模型落地中的高频需求。近日,IDEA研究院封神榜团队正式开源最新的代码大模型Ziya-Coding-34B-v1.0,我们在HumanEval Pass@1的评测上,取得了75.5的好成绩,超过了GPT-4(67.0)的得分,也成为目前已知开源模型新高。
|
3天前
|
人工智能 算法 数据格式
极智AI | 谈谈昇腾CANN量化
大家好,我是极智视界,本文介绍一下 谈谈昇腾CANN量化。
82 0
|
9月前
|
人工智能 自然语言处理 安全
中文竞技场大模型评测(AI从业者评测)
随着OpenAI研发的GPT大模型大火,市场意识到大模型的潜力与商机。2023年作为“大模型元年”,在这一年里,国内诞生了成千上万的大模型,但有大模型不意味着就能好,好的大模型才是市场上所需要的,那么怎么做出好的大模型呢?接下来将会介绍如何去评测大模型。
100189 2
|
9月前
|
存储 人工智能 测试技术
击败Llama 2,抗衡GPT-3.5,Stability AI新模型登顶开源大模型排行榜
击败Llama 2,抗衡GPT-3.5,Stability AI新模型登顶开源大模型排行榜
211 0
|
10月前
|
安全 Java Linux
隐语 PSI benchmark 白皮书,新鲜出炉
隐语 PSI benchmark 白皮书,新鲜出炉
271 0