贝泰妮使用PolarDB-X构建OMS分布式订单系统

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
简介: 贝泰妮使用PolarDB-X构建OMS分布式订单系统

贝泰妮新业务的订单系统计划元旦上线,而核心业务模块:订单业务模块在大促活动期间,单日几百万甚至千万级订单读写和订单处理,对数据库写入和查询性能提出较高要求。

最终客户选择使用PolarDB-X2.0,PolarDB-X2.0能够为用户提供高吞吐、大存储、低延时、易扩展和高可用的数据库服务。同时当客户业务体量即将突破单机数据库承载极限和单表过大导致性能、维护问题时,PolarDB-X的分布式改造为提供了高性价比方案。

贝泰妮OMS订单系统引入PolarDB-X2.0,在带来高吞吐、大存储、低延时、高可用的同时,PolarDB-X推出"透明分布式"系列能力,从连接、开发到管理行为均最大限度保留单机MySQL的使用体验,让用户的分布式改造周期大幅缩短,支持海量订单存储,解决订单表数据膨胀后的性能瓶颈。PolarDB-X具备从单机到分布式的平滑演进能力,支持动态通过DDL将一张大表动态调整为分布式的分区表,结合分布式事务、以及兼容MySQL binlog的数据回流,可完成单机到分布式的快速改造。

相关文章
|
4月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
3597 74
|
5月前
|
存储 Kubernetes 微服务
Dapr:用于构建分布式应用程序的便携式事件驱动运行时
Dapr 是一个可移植、事件驱动的运行时,简化了分布式应用程序的开发。它支持多语言、多框架,适用于云和边缘计算环境,提供服务调用、状态管理、消息发布/订阅等构建模块。通过 sidecar 模式,Dapr 帮助开发者轻松应对微服务架构的复杂性,实现弹性、可扩展的应用部署。
401 9
Dapr:用于构建分布式应用程序的便携式事件驱动运行时
|
6月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
1069 3
|
7月前
|
关系型数据库 分布式数据库 数据库
|
7月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
4月前
|
负载均衡 Java API
《深入理解Spring》Spring Cloud 构建分布式系统的微服务全家桶
Spring Cloud为微服务架构提供一站式解决方案,涵盖服务注册、配置管理、负载均衡、熔断限流等核心功能,助力开发者构建高可用、易扩展的分布式系统,并持续向云原生演进。
|
5月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
6月前
|
数据采集 存储 NoSQL
Scrapy 框架实战:构建高效的快看漫画分布式爬虫
Scrapy 框架实战:构建高效的快看漫画分布式爬虫
|
8月前
|
存储 监控 关系型数据库
突破IO瓶颈:PolarDB分布式并行查询(Parallel Query)深度调优手册
在海量数据处理中,I/O瓶颈严重制约数据库性能。本文基于PolarDB MySQL 8.0.32版本,深入解析分布式并行查询技术如何提升CPU利用率至86.7%、IO吞吐达8.5GB/s,并结合20+实战案例,系统讲解并行架构、执行计划优化、资源调优与故障排查方法,助力实现高性能数据分析。
296 6
|
7月前
|
人工智能 关系型数据库 分布式数据库
PolarDB Supabase 助力快速构建现代应用
简介:本文介绍了在AI时代背景下,如何通过阿里云瑶池推出的全托管Supabase服务快速构建现代应用。该服务基于开源Supabase与PolarDB-PG数据库,提供一站式后端解决方案,涵盖实时数据库、身份认证、文件存储及AI能力,助力开发者高效迭代业务,降低运维复杂度。适用于协作类应用、SaaS平台、移动开发等多种场景。

相关产品

  • 云原生分布式数据库 PolarDB-X
  • 云原生数据库 PolarDB