Flink CDC 1.12版本引入了对SQL Server的支持

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
实时计算 Flink 版,5000CU*H 3个月
简介: 【1月更文挑战第26天】【1月更文挑战第124篇】Flink CDC 1.12版本引入了对SQL Server的支持

Flink CDC 1.12版本引入了对SQL Server的支持,包括SqlServerCatalogSqlServerTable。在SqlServerCatalog中,你可以根据表名获取对应的字段和字段类型。

要使用Flink CDC 1.12版本的SqlServerCatalog,你需要添加以下依赖到你的项目中:

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-debezium_2.11</artifactId>
  <version>1.12.0</version>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-jdbc_2.11</artifactId>
  <version>1.12.0</version>
</dependency>

然后,你可以创建一个SqlServerCatalog实例,并使用它来获取表的字段和字段类型:

import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.catalog.Catalog;
import org.apache.flink.table.catalog.hive.HiveCatalog;
import org.apache.flink.table.catalog.jdbc.JdbcCatalog;
import org.apache.flink.table.catalog.mysql.MySqlCatalog;
import org.apache.flink.table.catalog.postgres.PostgresCatalog;
import org.apache.flink.table.catalog.sqlite.SqliteCatalog;
import org.apache.flink.table.catalog.sqlserver.SqlServerCatalog;
import org.apache.flink.table.descriptors.*;
import org.apache.flink.types.Row;

public class Main {
   
    public static void main(String[] args) {
   
        env = StreamExecutionEnvironment.getExecutionEnvironment();
        EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        env.setExecutionEnvironment(settings);
        // ...其他配置...

        // 创建SqlServerCatalog实例
        String name = "mySqlServer";
        String defaultDatabase = "your_database";
        String username = "your_username";
        String password = "your_password";
        String baseUrl = "jdbc:sqlserver://your_host:your_port;databaseName=" + defaultDatabase;
        SqlServerCatalog sqlServerCatalog = new SqlServerCatalog(name, defaultDatabase, username, password, baseUrl);
        env.registerCatalog("mySqlServer", sqlServerCatalog);
        env.useCatalog("mySqlServer");

        // 根据表名获取表的字段和字段类型
        String tableName = "your_table_name";
        try {
   
            TableDescriptor tableDescriptor = sqlServerCatalog.getTable(tableName);
            List<ColumnDescriptor> columns = tableDescriptor.getColumns();
            for (ColumnDescriptor column : columns) {
   
                System.out.println("Column Name: " + column.getName());
                System.out.println("Column Type: " + column.getType().toString());
            }
        } catch (Exception e) {
   
            e.printStackTrace();
        }
    }
}

请将上述代码中的your_databaseyour_usernameyour_passwordyour_hostyour_portyour_table_name替换为实际的值。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
163 15
|
10天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
32 9
|
2月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
582 1
Flink CDC:新一代实时数据集成框架
|
1月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
45 0
|
2月前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
74 2
|
2月前
|
SQL 大数据 数据处理
奇迹降临!解锁 Flink SQL 简单高效的终极秘籍,开启数据处理的传奇之旅!
【9月更文挑战第7天】在大数据处理领域,Flink SQL 因其强大功能与简洁语法成为开发者首选。本文分享了编写高效 Flink SQL 的实用技巧:理解数据特征及业务需求;灵活运用窗口函数(如 TUMBLE 和 HOP);优化连接操作,优先采用等值连接;合理选择数据类型以减少计算资源消耗。结合实际案例(如实时电商数据分析),并通过定期性能测试与调优,助力开发者在大数据处理中更得心应手,挖掘更多价值信息。
46 1
|
2月前
|
SQL 数据库
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
SQL Server附加数据库出现错误823,附加数据库失败。数据库没有备份,无法通过备份恢复数据库。 SQL Server数据库出现823错误的可能原因有:数据库物理页面损坏、数据库物理页面校验值损坏导致无法识别该页面、断电或者文件系统问题导致页面丢失。
101 12
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
|
6天前
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第8天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括系统准备、配置安装源、安装 SQL Server 软件包、运行安装程序、初始化数据库以及配置远程连接。通过这些步骤,您可以顺利地在 CentOS 系统上部署和使用 SQL Server 2019。
|
7天前
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第7天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括系统要求检查与准备、配置安装源、安装 SQL Server 2019、配置 SQL Server 以及数据库初始化(可选)。通过这些步骤,你可以成功安装并初步配置 SQL Server 2019,进行简单的数据库操作。
|
21天前
|
存储 数据挖掘 数据库
数据库数据恢复—SQLserver数据库ndf文件大小变为0KB的数据恢复案例
一个运行在存储上的SQLServer数据库,有1000多个文件,大小几十TB。数据库每10天生成一个NDF文件,每个NDF几百GB大小。数据库包含两个LDF文件。 存储损坏,数据库不可用。管理员试图恢复数据库,发现有数个ndf文件大小变为0KB。 虽然NDF文件大小变为0KB,但是NDF文件在磁盘上还可能存在。可以尝试通过扫描&拼接数据库碎片来恢复NDF文件,然后修复数据库。