Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析

简介: Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析

Pandas是最流行的用于数据分析的 Python 库。它提供高度优化的性能,后端源代码完全用CPython编写。

我们可以通过以下方式分析 pandas 中的数据:
1.Series
2.数据帧

Series:

Series 是 pandas 中定义的一维(1-D)数组,可用于存储任何数据类型。

代码 #1:创建 Series

# 创建 Series 的程序
# 导入 Panda 库
import pandas as pd
# 使用数据和索引创建 Series
a = pd.Series(Data, index = Index)

在这里,数据可以是:

  1. 一个标量值,可以是 integerValue、字符串
  2. 可以是键值对的Python 字典
  3. 一个Ndarray

注意:默认情况下,索引从 0、1、2、...(n-1) 开始,其中 n 是数据长度。


代码 #2:当 Data 包含标量值时

# 使用标量值创建 Series 的程序
# 数值数据
Data =[1, 3, 4, 5, 6, 2, 9]
# 使用默认索引值创建系列
s = pd.Series(Data) 
# 预定义的索引值
Index =['a', 'b', 'c', 'd', 'e', 'f', 'g']
# 创建具有预定义索引值的系列
si = pd.Series(Data, Index)

输出

image.png

具有默认索引的标量数据

image.png

带索引的标量数据

代码#3:当数据包含字典时

# 创建词典 Series 程序
dictionary ={'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
# 创建字典类型 Series
sd = pd.Series(dictionary)

输出

image.png

字典类型数据

代码 #4:当 Data 包含 Ndarray

# 创建 ndarray series 的程序
# 定义二维数组
Data =[[2, 3, 4], [5, 6, 7]]
# 创建一系列二维数组
snd = pd.Series(Data)

输出

image.png

数据作为 Ndarray

数据框:

DataFrames是 pandas 中定义的二维(2-D)数据结构,由行和列组成。

代码 #1:创建 DataFrame

# 创建 DataFrame 的程序
# 导入库
import pandas as pd
# 使用数据创建 DataFrame
a = pd.DataFrame(Data)

在这里,数据可以是:

  1. 一本或多本词典
  2. 一个或多个Series
  3. 2D-numpy Ndarray

 

代码 #2:当数据是字典时

# 使用两个字典创建数据框的程序
# 定义字典 1
dict1 ={'a':1, 'b':2, 'c':3, 'd':4}
# 定义字典 2
dict2 ={'a':5, 'b':6, 'c':7, 'd':8, 'e':9}
# 用 dict1 和 dict2 定义数据
Data = {'first':dict1, 'second':dict2}
# 创建数据框
df = pd.DataFrame(Data)

输出

image.png

带有两个字典的 DataFrame

代码 #3:当数据是Series时

# 创建三个系列的Dataframe的程序
import pandas as pd
# 定义 series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])
# 定义 series 2
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
# 定义 series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e']) 
# 定义 Data
Data ={'first':s1, 'second':s2, 'third':s3}
# 创建 DataFrame
dfseries = pd.DataFrame(Data)

输出

image.png

三个 Series 的 DataFrame

 

代码 #4:当 Data 为 2D-numpy ndarray

注意:在创建 2D 数组的 DataFrame 时必须保持一个约束 - 2D 数组的维度必须相同。

# 从二维数组创建 DataFrame 的程序
# 导入库
import pandas as pd
# 定义 2d 数组 1
d1 =[[2, 3, 4], [5, 6, 7]]
# 定义 2d 数组 2
d2 =[[2, 4, 8], [1, 3, 9]]
# 定义 Data
Data ={'first': d1, 'second': d2}
# 创建 DataFrame
df2d = pd.DataFrame(Data)

输出

image.png

带有 2d ndarray 的 DataFrame

目录
相关文章
|
16天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
18天前
|
数据可视化 数据挖掘
R中单细胞RNA-seq数据分析教程 (3)
R中单细胞RNA-seq数据分析教程 (3)
27 3
R中单细胞RNA-seq数据分析教程 (3)
|
20天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
58 4
数据分析的 10 个最佳 Python 库
|
3天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
30 8
|
3天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
21 7
|
3天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
22 4
|
3天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
20 5
|
23天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
21天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
24天前
|
机器学习/深度学习 数据挖掘
R中单细胞RNA-seq数据分析教程 (2)
R中单细胞RNA-seq数据分析教程 (2)
43 0
R中单细胞RNA-seq数据分析教程 (2)