Python 教程之 Pandas(13)—— series 上的转换操作

简介: Python 教程之 Pandas(13)—— series 上的转换操作

series 上的转换操作

在转换操作中,我们执行各种操作,例如更改系列的数据类型,将系列更改为列表等。为了执行转换操作,我们有各种有助于转换的功能,例如.astype().tolist()

代码#1:

# 使用 astype 转换 series 数据类型的 Python 程序
# importing pandas module  
import pandas as pd 
# 从 url 读取 csv 文件  
data = pd.read_csv("nba.csv") 
# 删除空值列以避免错误
data.dropna(inplace = True) 
# 在转换之前存储 dtype
before = data.dtypes 
# 使用 astype 转换 dtypes
data["Salary"]= data["Salary"].astype(int) 
data["Number"]= data["Number"].astype(str) 
# 转换后存储 dtype
after = data.dtypes 
# 打印出来比较
print("BEFORE CONVERSION\n", before, "\n") 
print("AFTER CONVERSION\n", after, "\n")

输出:

image.png


代码 #2:

# Python程序将 series 转换为列表
# 导入 pandas 模块  
import pandas as pd  
# 导入 regex 模块 
import re 
# 制作数据框 
data = pd.read_csv("nba.csv")  
# 删除空值以避免错误
data.dropna(inplace = True)  
# 操作前存储 dtype
dtype_before = type(data["Salary"]) 
# 转换为列表
salary_list = data["Salary"].tolist() 
# 操作后存储dtype
dtype_after = type(salary_list) 
# 打印数据类型
print("Data type before converting = {}\nData type after converting = {}"
      .format(dtype_before, dtype_after)) 
# 显示列表
salary_list

输出 :

image.png

Pandas series 方法:

功能 描述
Series() 可以使用 Series() 构造函数方法创建熊猫系列。此构造方法接受各种输入
combine_first() 方法用于将两个系列合二为一
count() 返回系列中非 NA/null 观测值的数量
size() 返回基础数据中的元素数
name() 方法允许为 Series 对象(即列)命名
is_unique() 如果对象中的值是唯一的,则方法返回布尔值
idxmax() 提取Series中最高值的索引位置的方法
idxmin() 提取系列中最低值的索引位置的方法
sort_values() 在 Series 上调用方法以按升序或降序对值进行排序
sort_index() 在熊猫系列上调用方法以按索引而不是其值对其进行排序
head() 方法用于从系列的开头返回指定数量的行。该方法返回一个全新的系列
tail() 方法用于从 Series 的末尾返回指定数量的行。该方法返回一个全新的系列
le() 用于将 Caller 系列的每个元素与传递的系列进行比较。对于每个小于或等于传递系列中的元素的元素,它返回 True
ne() 用于将 Caller 系列的每个元素与传递的系列进行比较。它为每个不等于传递系列中的元素的元素返回 True
ge() 用于将 Caller 系列的每个元素与传递的系列进行比较。它为大于或等于传递系列中的元素的每个元素返回 True
eq() 用于将 Caller 系列的每个元素与传递的系列进行比较。它为每个等于传递系列中的元素的元素返回 True
gt() 用于比较两个系列并为每个元素返回布尔值
lt() 用于比较两个系列并为每个元素返回布尔值
clip() 用于剪裁低于和高于传递的最小和最大值的值
clip_lower() 用于裁剪低于传递的最小值的值
clip_upper() 用于剪裁高于传递的最大值的值
astype() 方法用于更改系列的数据类型
tolist() 方法用于将系列转换为列表
get() 在 Series 上调用方法以从 Series 中提取值。这是传统括号语法的替代语法
unique() Pandas unique() 用于查看特定列中的唯一值
nunique() Pandas nunique() 用于获取唯一值的计数
value_counts() 计算每个唯一值在系列中出现的次数的方法
factorize() 方法通过识别不同的值来帮助获得数组的数字表示
map() 将一个对象的值绑定到另一个对象的方法
between() Pandas between() 方法用于系列检查哪些值位于第一个和第二个参数之间
apply() 调用方法并将 Python 函数作为参数提供给每个 Series 值使用该函数。此方法有助于执行 pandas 或 numpy 中未包含的自定义操作


目录
相关文章
|
27天前
|
数据格式 Python
如何使用Python的Pandas库进行数据透视图(melt/cast)操作?
Pandas的`melt()`和`pivot()`函数用于数据透视。基本步骤:导入pandas,创建DataFrame,然后使用这两个函数转换数据格式。示例代码展示了如何通过`melt()`转为长格式,再用`pivot()`恢复为宽格式。输入数据是包含'Name'和'Age'列的DataFrame,最终结果经过转换后呈现出不同的布局。
39 6
|
27天前
|
数据挖掘 数据处理 索引
如何使用Python的Pandas库进行数据筛选和过滤?
Pandas是Python数据分析的核心库,其DataFrame数据结构便于数据操作。筛选与过滤数据主要包括:导入pandas,创建DataFrame,通过布尔索引、`query()`或`loc[]`、`iloc[]`方法筛选。
|
24天前
|
BI 数据处理 索引
Pandas基本操作:Series和DataFrame(Python)
Pandas基本操作:Series和DataFrame(Python)
95 1
|
11天前
|
人工智能 机器人 C++
【C++/Python】Windows用Swig实现C++调用Python(史上最简单详细,80岁看了都会操作)
【C++/Python】Windows用Swig实现C++调用Python(史上最简单详细,80岁看了都会操作)
|
28天前
|
JSON C语言 C++
【Python 基础教程 26】Python3标准库全面入门教程:一步步带你深入理解与应用
【Python 基础教程 26】Python3标准库全面入门教程:一步步带你深入理解与应用
60 1
|
2天前
|
存储 数据库连接 数据处理
数据加载与保存:Pandas中的数据输入输出操作
【4月更文挑战第16天】Pandas是Python数据分析的强大工具,支持多种数据加载和保存方法。本文介绍了如何使用Pandas读写CSV和Excel文件,以及与数据库交互。`read_csv`和`to_csv`用于CSV操作,`read_excel`和`to_excel`处理Excel文件,而`read_sql`和`to_sql`则用于数据库的读写。了解这些基本操作能提升数据处理的效率和灵活性。
|
24天前
|
数据采集 存储 Web App开发
一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧
一键实现数据采集和存储:Python爬虫、Pandas和Excel的应用技巧
|
28天前
|
存储 安全 API
【Python 基础教程 21】Python3 文件操作全面指南:从入门到精通的综合教程
【Python 基础教程 21】Python3 文件操作全面指南:从入门到精通的综合教程
73 0
|
28天前
|
存储 算法 数据挖掘
【Python 基础教程 25】全面入门指南:深度解析Python3的命名空间,作用域及变量使用教程
【Python 基础教程 25】全面入门指南:深度解析Python3的命名空间,作用域及变量使用教程
50 0
|
28天前
|
存储 机器学习/深度学习 数据安全/隐私保护
【Python 基础教程 24】全面入门Python面向对象编程:深度探索与实战教程
【Python 基础教程 24】全面入门Python面向对象编程:深度探索与实战教程
76 0

热门文章

最新文章