Python 教程之 Pandas(10)—— 访问 series 的元素

简介: Python 教程之 Pandas(10)—— 访问 series 的元素

Pandas series 是一个一维标记数组,能够保存任何类型的数据(整数、字符串、浮点数、 对象等)。轴标签统称为索引。Pandas 系列只不过是 Excel 工作表中的一列。标签不必是唯一的,但必须是可散列的类型。该对象支持整数和基于标签的索引,并提供了许多方法来执行涉及索引的操作。

这篇文章我们来简单介绍一下访问 series 的元素

访问 series 的元素

我们可以通过两种方式访问 series 元素,它们是:

  • 从具有位置的系列中访问元素
  • 使用标签(索引)访问元素

从具有位置的系列中访问元素: 为了访问系列元素,请参考索引号。使用索引运算符 [ ] 访问系列中的元素。索引必须是整数。为了访问一个系列中的多个元素,我们使用 Slice 操作。

访问 Series 的前 5 个元素

# import pandas and numpy 
import pandas as pd
import numpy as np
# 创建简单数组
data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
ser = pd.Series(data)
# 检索第一个元素
print(ser[:5])

输出:

image.png


使用标签(索引)访问元素:

为了访问系列中的元素,我们必须通过索引标签设置值。Series 就像一个固定大小的字典,您可以通过索引标签获取和设置值。

使用索引标签访问单个元素

# import pandas and numpy 
import pandas as pd
import numpy as np
# 创建简单数组
data = np.array(['g','e','e','k','s','f', 'o','r','g','e','e','k','s'])
ser = pd.Series(data,index=[10,11,12,13,14,15,16,17,18,19,20,21,22])
# 使用索引元素访问元素
print(ser[16])

输出 :

本篇文章到此就结束了,相关文章:


目录
相关文章
|
17天前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
22 3
|
3月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
226 67
|
2月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
55 2
|
3月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
192 10
|
3月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
69 4
|
4月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
4月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
5月前
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
480 13
|
5月前
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
70 8
|
5月前
|
数据可视化 API 数据处理
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
【Python篇】matplotlib超详细教程-由入门到精通(上篇)
251 5

热门文章

最新文章