Python 教程之 Pandas(9)—— 创建 Pandas Series

简介: Python 教程之 Pandas(9)—— 创建 Pandas Series

Pandas series 是一个一维标记数组,能够保存任何类型的数据(整数、字符串、浮点数、 对象等)。轴标签统称为索引。Pandas 系列只不过是 Excel 工作表中的一列。标签不必是唯一的,但必须是可散列的类型。该对象支持整数和基于标签的索引,并提供了许多方法来执行涉及索引的操作。

创建 Pandas Series

在现实世界中,将通过从现有存储中加载数据集来创建 Pandas Series,存储可以是 SQL 数据库、CSV 文件和 Excel 文件。Pandas 系列可以从列表、字典和标量值等创建。系列可以通过不同的方式创建,以下是我们创建系列的一些方法:

从数组创建 Series: 为了从数组创建系列,我们必须导入一个 numpy 模块并且必须使用 array() 函数。

# import pandas as pd
import pandas as pd
# import numpy as np
import numpy as np
# 简单数组
data = np.array(['g','e','e','k','s'])
ser = pd.Series(data)
print(ser)

输出 :

image.png


从列表创建系列:

为了从列表创建系列,我们必须首先创建一个列表,然后我们可以从列表创建系列。

import pandas as pd
# 一个简单的列表
list = ['g', 'e', 'e', 'k', 's']
# 从列表创建系列
ser = pd.Series(list)
print(ser)

输出 :

image.png

本篇文章到此就结束了,相关文章:


目录
相关文章
|
1月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
220 0
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
356 0
|
1月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
118 1
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
675 19
|
2月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
338 0
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名
【4月更文挑战第22天】Pandas Python库提供数据排序和排名功能。使用`sort_values()`按列进行升序或降序排序,如`df.sort_values(by='A', ascending=False)`。`rank()`函数用于计算排名,如`df['A'].rank(ascending=False)`。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`和分别对'A'、'B'列排名。
432 2
|
索引 Python
如何使用Python的Pandas库进行数据合并和拼接?
Pandas的`merge()`函数用于数据合并,如示例所示,根据'key'列对两个DataFrame执行内连接。`concat()`函数用于数据拼接,沿轴0(行)拼接两个DataFrame,并忽略原索引。
348 2
|
数据处理 Python
如何使用Python的Pandas库进行数据排序和排名?
Pandas在Python中提供数据排序和排名功能。使用`sort_values()`进行排序,如`df.sort_values(by='A', ascending=False)`进行降序排序;用`rank()`进行排名,如`df['A'].rank(ascending=False)`进行降序排名。多列操作可传入列名列表,如`df.sort_values(by=['A', 'B'], ascending=[True, False])`。
433 6
|
数据挖掘 索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
【4月更文挑战第21天】Pandas在Python中提供了丰富的时间序列分析功能,如创建时间序列`pd.date_range()`,转换为DataFrame,设置时间索引`set_index()`,重采样`resample()`(示例:按月`'M'`和季度`'Q'`),移动窗口计算`rolling()`(如3个月移动平均)以及季节性调整`seasonal_decompose()`。这些工具适用于各种时间序列数据分析任务。
255 2

推荐镜像

更多
下一篇
oss云网关配置