Flink CDC里关于doris的动态分区问题,对以及建好的动态分区表,可以再次修改历史分区的保留时间嘛?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【1月更文挑战第24天】【1月更文挑战第117篇】Flink CDC里关于doris的动态分区问题,对以及建好的动态分区表,可以再次修改历史分区的保留时间嘛?

Flink CDC里关于doris的动态分区问题,对以及建好的动态分区表,可以再次修改历史分区的保留时间嘛?

在Doris中,一旦启用了动态分区功能,将不再允许用户手动管理分区。系统会根据所设定的动态分区属性来自动进行分区管理。如果已设定dynamic_partition.start,那么在动态分区起始偏移之前的历史分区将会被删除。

对于建好的动态分区表,如果想要再次修改历史分区的保留时间,目前Doris并不直接支持此操作。因为一旦启动了动态分区功能,Doris会定期根据当前的日期时间来添加分区和删除分区,以减轻维护工作量。

综上,对于Flink CDC里关于Doris的动态分区问题,以及对于已经建好的动态分区表是否可以再次修改历史分区的保留时间,目前Doris的规定是不能更改历史分区的保留时间。在设计和使用过程中,需要对此有所考虑。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
12天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
321 12
Flink CDC YAML:面向数据集成的 API 设计
|
14天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
119 43
|
1月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
200 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
2月前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
190 17
|
2月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
zdl
|
3月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
212 56
|
3月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1757 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
4月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
114 1
|
4月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。