Dating Java8系列之Lambda表达式和函数式接口(下)

简介: Dating Java8系列之Lambda表达式和函数式接口(下)



使用函数式接口

  • 函数式接口定义且只定义了一个抽象方法。
  • 函数式接口很有用, 因为抽象方法的签名可以描述Lambda表达式的签名。
  • 为了应用不同的Lambda表达式,你需要一套能够描述常见函数描述符的函数式接口。
  • Java 8的库设计师帮我们在java.util.function包中引入了几个新的函数式接口。

常用的函数式接口

一元函数

  • Function(一般函数)
  • Consumer(消费者)
  • Predicate(谓词函数)
  • Supplier(供应者)

二元函数

  • BiFunction(一般函数)
  • BiConsumer(消费者)
  • BiPredicate(谓词函数)
public class FunctionLearn {
    /**     * Function     */    public static void learnFunction() {        Function<String, String> functionStr = (String s) -> s + "。";        System.out.println(functionStr.apply("Hello World"));
        Function<Integer, Integer> function1 = (Integer a) -> a + 2;        Integer x = function1.apply(5);        System.out.println(x);        Function<Integer, Integer> function2 = (Integer a) -> a * 2;
        // 组合两个Function函数,a * 2 compose a+2 = (a+2) * 2        Function<Integer, Integer> function3 = function2.compose(function1);        System.out.println("Function3 : " + function3.apply(20));
        // 先后顺序拼接两个Function a *2 andThen a+2 = (a*2) + 2        Function<Integer, Integer> function4 = function2.andThen(function1);        System.out.println("Function4 : " + function4.apply(15));
        // 输入啥返回啥        Function.identity();    }
    /**     * Consumer     */    public static void learnConsumer() {        Consumer<Integer> consumer1 = (Integer a) -> System.out.println("Consumer 1 : " + a);        // 吃掉外部传进来的T,在方法内部消化掉,什么也不返回        consumer1.accept(100);        Consumer<Integer> consumer2 = (Integer a) -> System.out.println("Consumer 2 : " + a + "Done");        Consumer<Integer> consumer3 = consumer1.andThen(consumer2);        consumer3.accept(10);        consumer1.andThen(consumer2).accept(10);    }
    /**     * Supplier     */    public static void learnSupplier() {        // 无中生有,凭空生成一个东西出来        Supplier<Integer> supplier = () -> 10;        Integer a = supplier.get();        System.out.println(a);    }
    /**     * Predicate     */    public static void learnPredicate() {        Predicate<Integer> predicate1 = (Integer a) -> a > 10;        System.out.println(predicate1.test(20));
        Predicate<Integer> predicate2 = (Integer a) -> a < 20;        // and 与操作        Predicate<Integer> predicate3 = predicate1.and(predicate2);        System.out.println(predicate3.test(9));
        Predicate<Integer> predicate4 = (Integer a) -> a > 8;        // or 或操作        System.out.println(predicate1.or(predicate4).test(7));
        // ! 取反操作        System.out.println(predicate4.negate().test(7));    }
    /**     * BiFunction     */    public static void learnBiFunction() {        BiFunction<Integer, Integer, Integer> biFunction1 = (Integer a, Integer b) -> a + b;        System.out.println(biFunction1.apply(10, 15));        Function<Integer, Integer> biFunction2 = (Integer a) -> a * 2;        System.out.println(biFunction1.andThen(biFunction2).apply(10, 15));    }
    /**     * BiConsumer     */    public static void learnBiConsumer() {        BiConsumer<Integer, Integer> biConsumer1 = (Integer a, Integer b) -> System.out.println(a + b);        biConsumer1.accept(1, 2);        BiConsumer<Integer, Integer> biConsumer2 = (Integer a, Integer b) -> System.out.println(a * b);        biConsumer1.andThen(biConsumer2).accept(1, 2);    }
    /**     * BiPredicate     */    public static void learnBiPredicate() {        BiPredicate<Integer, Integer> biPredicate1 = (Integer a, Integer b) -> a > 10 && b < 15;        System.out.println(biPredicate1.test(11, 14));        BiPredicate<Integer, Integer> biPredicate2 = (Integer a, Integer b) -> a > 13;
        System.out.println(biPredicate1.and(biPredicate2).test(11, 14));        System.out.println(biPredicate1.or(biPredicate2).test(11, 14));        System.out.println(biPredicate2.negate().test(11, 14));    }
    public static void main(String[] args) {
        learnFunction();        learnConsumer();        learnSupplier();        learnPredicate();        learnBiFunction();        learnBiConsumer();        learnBiPredicate();    }}

方法引用

简介

方法引用可以被看作仅仅调用特定方法的Lambda的一种快捷写法。

当你需要使用方法引用时,目标引用放在分隔符::前,方法的名称放在后面。

例如, Phone::getPrice就是引用了Phone类中定义的方法getPrice。请记住,不需要括号,因为你没有实际调用这个方法。方法引用就是Lambda表达式(Phone a) -> a.getPrice()的快捷写法。

构建方法引用

方法引用主要有三类。

  1. 指向静态方法的方法引用(例如Integer的parseInt方法,写作Integer::parseInt)。
  2. 指向任意类型实例方法的方法引用(例如String的length方法,写作 String::length)。
  3. 指向现有对象的实例方法的方法引用(假设你有一个局部变量mobileCategory用于存放Category类型的对象,它支持实例方法getValue,那么你就可以写mobileCategory::getValue)。

释义

第二种和第三种方法引用可能乍看起来有点儿晕。

类似于String::length的第二种方法引用的思想就是你在引用一个对象的方法,而这个对象本身是Lambda的一个参数。例如,Lambda表达式(String s) -> s.toUppeCase()可以写作String::toUpperCase。

但第三种方法引用指的是,你在Lambda中调用一个已经存在的外部对象中的方法。例如,Lambda表达式()->mobileCategory.getValue()可以写作mobileCategory::getValue。

public class MethodReference {
    public static void main(String[] args) {        Function<String, Integer> function = (String s) -> Integer.parseInt(s);        Integer a = function.apply("15");        System.out.println(a);
        // 指向静态方法的方法引用(例如Integer的parseInt方法,写作Integer::parseInt)。        Function<String, Integer> function1 = Integer::parseInt;        System.out.println(function1.apply("20"));
        // 指向任意类型实例方法的方法引用        Function<String, Integer> function2 = (String s) -> s.length();        System.out.println(function2.apply("abc"));        Function<String, Integer> function3 = String::length;        System.out.println(function3.apply("abcd"));
        // 指向现有对象的实例方法的方法引用        // 调用外部的对象        PhonePredicate phonePredicate = (Phone phone) -> true;        Function<Phone, Boolean> function4 = (Phone phone) -> phonePredicate.test(phone);        System.out.println(function4.apply(new Phone()));        Function<Phone, Boolean> function5 = phonePredicate::test;        System.out.println(function5.apply(new Phone()));
        Supplier<Phone> supplier = Phone::new;        Function<Integer,Phone> function6 = Phone::new;    }}

构造函数引用

对于一个现有构造函数,我们可以利用它的名称和关键字new来创建它的一个引用: ClassName::new。

它的功能与指向静态方法的引用类似。

无参构造函数

例如,假设有一个构造函数没有参数。 它适合Supplier的签名() -> Phone。

Supplier<Phone> c1 = Phone::new;Phone a1 = c1.get();

这就等价于:

Supplier<Phone> c1 = () -> new Phone();Phone a1 = c1.get();

有参构造函数

如果你的构造函数的签名是Phone(Integer price),那么它就适合Function接口的签名。

Function<Integer, Phone> c2 = Phone::new;Phone a2 = c2.apply(110);

这就等价于:

Function<Integer, Phone> c2 = (price) -> new Phone(price);Phone a2 = c2.apply(110);

小结

  • Lambda表达式可以理解为一种匿名函数:它没有名称,但有参数列表、函数主体、返回类型,可能还有一个可以抛出的异常的列表。
  • 函数式接口就是仅仅声明了一个抽象方法的接口。
  • 只有在接受函数式接口的地方才可以使用Lambda表达式。
  • Lambda表达式允许你直接内联,为函数式接口的抽象方法提供实现,并且将整个表达式作为函数式接口的一个实例。
  • Java 8自带一些常用的函数式接口,放在java.util.function包里,包括Predicate<T>、Function<T,R>、Supplier<T>、Consumer<T>。
  • Comparator、Predicate和Function等函数式接口都有几个可以用来结合Lambda表达式的默认方法。

作者:翎野君

本篇文章如有帮助到您,请给「翎野君」点个赞,感谢您的支持。

目录
相关文章
|
6天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
5天前
|
Java
探索Java中的Lambda表达式
【10月更文挑战第37天】本文将带你深入理解Java的Lambda表达式,从基础语法到高级特性,通过实例讲解其在函数式编程中的应用。我们还将探讨Lambda表达式如何简化代码、提高开发效率,并讨论其在实际项目中的应用。
|
7天前
|
Java API
Java中的Lambda表达式与函数式编程####
【10月更文挑战第29天】 本文将深入探讨Java中Lambda表达式的实现及其在函数式编程中的应用。通过对比传统方法,我们将揭示Lambda如何简化代码、提高可读性和维护性。文章还将展示一些实际案例,帮助读者更好地理解和应用Lambda表达式。 ####
|
7天前
|
JSON 自然语言处理 Java
这款轻量级 Java 表达式引擎,真不错!
AviatorScript 是一个高性能、轻量级的脚本语言,基于 JVM(包括 Android 平台)。它支持数字、字符串、正则表达式、布尔值等基本类型,以及所有 Java 运算符。主要特性包括函数式编程、大整数和高精度运算、完整的脚本语法、丰富的内置函数和自定义函数支持。适用于规则判断、公式计算、动态脚本控制等场景。
|
7天前
|
Java
java线程接口
Thread的构造方法创建对象的时候传入了Runnable接口的对象 ,Runnable接口对象重写run方法相当于指定线程任务,创建线程的时候绑定了该线程对象要干的任务。 Runnable的对象称之为:线程任务对象 不是线程对象 必须要交给Thread线程对象。 通过Thread的构造方法, 就可以把任务对象Runnable,绑定到Thread对象中, 将来执行start方法,就会自动执行Runable实现类对象中的run里面的内容。
21 1
|
12天前
|
Java API 开发者
Java中的Lambda表达式与函数式编程####
在Java的演变过程中,Lambda表达式和函数式编程的引入无疑是一次重大的飞跃。本文将深入探讨Lambda表达式的定义、用法及优势,并结合实例说明如何在Java中利用Lambda表达式进行函数式编程。通过对比传统编程方式,揭示Lambda表达式如何简化代码、提高开发效率和可维护性。 ####
|
8天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
17天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
4天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
21 9
|
7天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####