基于GoogleNet深度学习网络的花朵类型识别matlab仿真

简介: 基于GoogleNet深度学习网络的花朵类型识别matlab仿真

1.算法运行效果图预览
1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
花朵类型识别是计算机视觉领域中的一个重要任务。它在植物学研究、农业、园艺等领域有着广泛的应用。传统的花朵类型识别方法通常基于手工设计的特征提取器,这些方法的效果受限于特征提取器的设计。近年来,深度学习在许多计算机视觉任务中取得了显著的成功。其中,GoogleNet是一种深度学习网络结构,它在图像分类任务中具有优异的性能。

3.1. GoogleNet网络结构
GoogleNet是一种基于Inception模块的深度学习网络结构。它通过引入Inception模块,增加了网络的宽度,并减少了网络的参数数量。GoogleNet的主要创新点包括:

Factorization into small convolutions:这种思想通过将一个较大的卷积核分解为多个较小的卷积核,减少了参数数量,并增加了网络的非线性表达能力。例如,将7x7的卷积核分解为1x7和7x1的卷积核,不仅可以减少参数数量,还可以增加网络的深度。
Inception Module:这个模块通过使用多个不同大小的卷积核并行地进行卷积操作,能够提取不同抽象程度的高阶特征。这些特征被拼接在一起,形成了更加丰富的特征表示。Inception Module的结构在网络的后部分出现,前面仍然是普通的卷积层。
去除全连接层:GoogleNet去除了传统CNN中的全连接层,使用1x1的卷积层来进行特征的降维和分类。这样可以大大减少参数数量,减轻过拟合的风险。
3.2. 基于GoogleNet的花朵类型识别
花朵类型识别的任务是将输入的花朵图像分类为不同的类别。使用GoogleNet进行花朵类型识别的步骤如下:

  数据准备:收集不同类别的花朵图像数据集,并对图像进行预处理,如归一化、尺寸调整等。

   网络训练:使用花朵图像数据集训练GoogleNet网络。在训练过程中,通过反向传播算法优化网络的参数,使得网络能够学习到花朵图像的特征表示。

   特征提取:训练完成后,可以使用GoogleNet网络对输入的花朵图像进行特征提取。通过前向传播,将图像输入到网络中,并提取出最后一层的特征表示。

  分类器设计:在得到花朵图像的特征表示后,可以设计一个分类器对其进行分类。可以使用简单的分类器,如softmax分类器。

   类别预测:使用训练好的分类器对测试集中的花朵图像进行类别预测,并评估模型的性能。

   通过基于GoogleNet的深度学习方法,我们可以有效地识别花朵的类型,为植物学研究、农业、园艺等领域提供有力的支持。

4.部分核心程序

```Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Dataset);

%显示各个花朵的整体识别率
% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Training_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);

lab1 = [];
for i = 1:length(Dataset.Labels)
if Dataset.Labels(i) == 'daisy'
lab1 = [lab1,1];
end
if Dataset.Labels(i) == 'dandelion'
lab1 = [lab1,2];
end
if Dataset.Labels(i) == 'roses'
lab1 = [lab1,3];
end
if Dataset.Labels(i) == 'sunflowers'
lab1 = [lab1,4];
end
if Dataset.Labels(i) == 'tulips'
lab1 = [lab1,5];
end
end

lab2 = [];
for i = 1:length(Predicted_Label)
if Predicted_Label(i) == 'daisy'
lab2 = [lab2,1];
end
if Predicted_Label(i) == 'dandelion'
lab2 = [lab2,2];
end
if Predicted_Label(i) == 'roses'
lab2 = [lab2,3];
end
if Predicted_Label(i) == 'sunflowers'
lab2 = [lab2,4];
end
if Predicted_Label(i) == 'tulips'
lab2 = [lab2,5];
end
end

figure;
plot(lab1,'b-s',...
'LineWidth',1,...
'MarkerSize',8,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(lab2,'r-->',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
title(['识别率',num2str(100*accuracy),'%']);
legend('真实种类','识别种类');
title('1:daisy, 2:dandelion, 3:roses, 4:sunflowers, 5:tulips');

% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Training_Dataset.Files), 12);

figure
for i = 1:12% 在子图中展示每张图像、预测标签和概率
subplot(3,4,i)
I = readimage(Dataset, index(i));% 读取图像
imshow(I) % 显示图像
label = Predicted_Label(index(i));% 预测标签
title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end

```

相关文章
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
8天前
|
传感器 存储 算法
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
18天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
29天前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
28天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
314 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章