阿里云PAI:一站式AI研发平台,引领深度学习潮流

简介: 阿里云PAI:一站式AI研发平台,引领深度学习潮流随着人工智能的飞速发展,深度学习框架已经成为AI研发的核心工具。然而,选择合适的深度学习框架并不容易,需要考虑的因素包括计算性能、易用性、支持的算法组件等多种因素。今天,我们就来介绍一款一站式AI研发平台——阿里云PAI,看看它如何解决这些痛点。

阿里云PAI:一站式AI研发平台,引领深度学习潮流
随着人工智能的飞速发展,深度学习框架已经成为AI研发的核心工具。然而,选择合适的深度学习框架并不容易,需要考虑的因素包括计算性能、易用性、支持的算法组件等多种因素。今天,我们就来介绍一款一站式AI研发平台——阿里云PAI,看看它如何解决这些痛点。image.png

PAI是一款基于阿里云及阿里巴巴集团多年技术积累的AI研发平台,支持多种计算框架,包括流式计算框架Flink,深度学习框架TensorFlow、PyTorch、Megatron和DeepSpeed,大规模并行计算框架Parameter Server,以及Spark、PySpark、MapReduce等主流开源框架。无论你是AI研发的新手,还是资深专家,都可以在PAI上找到适合自己的工具。
PAI提供的服务也非常丰富,包括可视化建模和分布式训练Designer,交互式AI研发DSW,分布式训练DLC,以及在线预测EAS。通过这些服务,你可以轻松完成AI研发的全生命周期,从数据标注、模型开发、模型训练,到模型优化、模型部署和AI运维管控。
更令人惊喜的是,PAI还拥有140+种优化的内置算法组件,支持业内TensorFlow、PyTorch等多种深度学习框架,提供多种模式、大数据引擎深度结合、多框架兼容、自定义镜像等核心能力。无论是图像识别、语音识别,还是自然语言处理,PAI都能为你提供强大的支持。
PAI还提供了云原生架构的AI开发、训练、部署的产品,支持全托管、半托管的公共云服务,以及AI高性能计算集群和轻量化输出产品形态。这意味着,你可以根据自己的需求,选择最适合自己的AI解决方案。
总的来说,阿里云PAI是一款功能强大、易用性高的一站式AI研发平台,无论你是AI研发的新手,还是资深专家,都可以在PAI上找到适合自己的工具。让我们一起期待,PAI将如何引领深度学习的发展潮流!

目录
相关文章
|
3月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
802 109
|
7月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
5月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
777 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
6月前
|
人工智能 监控 测试技术
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。 阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
7月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
431 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
6月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
9月前
|
人工智能 智能设计 自然语言处理
2024云栖大会回顾|PAI ArtLab x 通往AGI之路系列活动,PAI ArtLab助力行业AI创新
2024云栖大会回顾|PAI ArtLab x 通往AGI之路系列活动,PAI ArtLab助力行业AI创新