【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)

简介: 【Simulink】极值搜索控制 Extremum Seeking Control(无模型控制)

1.什么是极值搜索控制?

首先明确一下,对于y=f(x),f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。

极值搜索,顾名思义,就是找到极小值点或者极大值点,过程就是不断地调整控制系统参数,使得性能指标达到最优,找到极值点。

Matlab官方有个15分钟左右的视频,一步步地解释了极值搜索控制的原理,并且做了仿真实验,我觉得讲得挺清晰的,非常适合入门

👉 What is Extremum Seeking Control | Learning-Based Control

The Extremum Seeking Control block tunes controller parameters to maximize an objective function. Extremum seeking controllers are model-free adaptive controllers that are useful for adapting to unknown system dynamics and unknown mappings from control parameters to an objective function. When seeking multiple parameters, the Extremum Seeking Control block uses a separate tuning loop for each parameter.

The Extremum Seeking Control block searches for optimal control parameters by modulating (perturbing) the parameters with sinusoidal signals and demodulating the resulting perturbed objective function.

🌟 通俗解释:

通俗地讲,极值搜索控制的输入其实是控制性能指标,也就是原来系统的输出,我们求解的就是系统输出达到极值时对应的极值点。对于寻找极大值的系统,如果输入和输出同时增加,表明系统正朝着极值的方向前进,则继续加大输入,反之则减小输入;对于寻找极小值的系统,如果输入和输出同时增加,表明系统正朝着极值的反方向前进,则减小输入,反之则增大输入。简而言之,寻找极大值和极小值的系统略有不同,而输入和输出的同时变化,可以用相乘然后取积分衡量。

🌟 极值搜索的优缺点

极值搜索是一种基于非模型(无模型/数据驱动)的实时优化方法,适用于解决动态问题,特别是当人们对一个系统的认识相当有限的时候。例如在实际控制系统中,由于控制系统参数的不确定性和实时变化的特点,使得参考量与输出量之间的函数关系很难被知晓。但只要特性曲线具有先增后减或者先减后增特点(即存在峰值),极值搜索控制算法就可以根据系统特性曲线的上述形状特性来到达峰值点,并使其自适应影响系统的因素变化,提高控制策略的鲁棒性。

极值搜索不仅可以应用在单变量寻优,还能应用在多变量上面。

缺点:局部最优;需要调节的参数比较多。

相关文章
|
算法
大林算法控制仿真实验(计控实验六simulink)
大林算法控制仿真实验(计控实验六simulink)
733 0
大林算法控制仿真实验(计控实验六simulink)
|
5天前
|
安全
基于AFDPF主动频率偏移法的孤岛检测Simulink仿真
本课题基于AFDPF(主动频率偏移法)进行孤岛检测的Simulink仿真。在分布式发电系统中,孤岛现象可能对电网安全和人员生命构成威胁。AFDPF通过主动改变并网点的注入功率,引起系统频率的变化,从而检测孤岛现象。系统正常运行时,频率由主电网控制;采用AFDPF方法时,逆变器短暂改变有功功率输出,监测频率变化。若频率迅速恢复,说明系统仍与大电网相连;否则,可能存在孤岛现象。本仿真使用MATLAB2022a版本。
自适应模型预测控制器AMPC的simulink建模与仿真
通过Simulink内嵌Matlab实现自适应MPC控制器,结合系统模型与控制对象完成仿真。面对日益复杂的工业过程,AMPC融合MPC与自适应控制优势,依据系统变化自动调节参数,确保优化控制及鲁棒性。MPC通过预测模型优化控制序列;自适应控制则动态调整控制器以应对不确定性。AMPC适用于多变环境下高性能控制需求,如化工、航空及智能交通系统。[使用MATLAB 2022a]
|
3月前
|
运维 安全
基于simulink的分布式发电系统自动重合闸的建模与仿真分析
本课题研究配电系统中分布式电源接入后的自动重合闸问题,着重分析非同期重合闸带来的冲击电流及其影响。通过Simulink搭建模型,仿真不同位置及容量的分布式电源对冲击电流的影响,并对比突发性和永久性故障情况。利用MATLAB2022a进行参数设置与仿真运行,结果显示非同期重合闸对系统安全构成挑战,需通过优化参数提升系统性能。
基于PID控制器的直流电机位置控制系统simulink建模与仿真
**摘要:** 构建基于PID的直流电机位置控制系统,利用PID的简易性和有效性实现精确控制。在MATLAB2022a中进行系统仿真,展示结果。控制器基于误差(e(t))生成控制信号(u(t)),由比例(K_p)、积分(K_i)和微分(K_d)项构成。系统采用三层控制环:位置环设定速度参考,速度环调节实际速度,电流环确保电流匹配,以达成期望位置。
|
3月前
|
算法
自适应PID控制器的simulink建模与仿真
本研究实现PID控制器参数(kp, ki, kd)的自适应调整,达成最优控制并展示参数收敛过程。MATLAB2022a环境下仿真结果显示,参数经调整后趋于稳定,控制器输出平滑,误差显著降低。自适应PID通过实时监测系统性能自动优化参数,有效应对不确定性,维持系统稳定及高性能。采用不同优化算法调整PID参数,确保最佳控制效果。
基于simulink的模糊PID控制器建模与仿真,并对比PID控制器
在MATLAB 2022a的Simulink中,构建了模糊PID和标准PID控制器模型,对比两者控制输出。模糊控制器采用模糊逻辑处理误差和误差变化率,通过模糊化、推理和去模糊化调整PID参数。模糊PID能更好地应对非线性和不确定性,而标准PID虽然简单易实现,但对复杂系统控制可能不足。通过仿真分析,可选择适合的控制器类型。
Angular 内容投影 content projection 关于条件渲染问题的单步调试
Angular 内容投影 content projection 关于条件渲染问题的单步调试
|
机器学习/深度学习 传感器 算法
【带RL负载的全波桥式整流器】功能齐全的单相非控整流器(Simulink)
【带RL负载的全波桥式整流器】功能齐全的单相非控整流器(Simulink)
|
自动驾驶 机器人
【误差自适应跟踪方法AUV】自适应跟踪(EAT)方法研究(Matlab代码&Simulin实现)
【误差自适应跟踪方法AUV】自适应跟踪(EAT)方法研究(Matlab代码&Simulin实现)