js的常见的三种密码加密方式-MD5加密、Base64加密和解密和sha1加密详解总结

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: js的常见的三种密码加密方式-MD5加密、Base64加密和解密和sha1加密详解总结

写在前面

写前端的时候,很多的时候是避免不了注册这一关的,但是一般的注册是没有任何的难度的,无非就是一些简单的获取用户输入的数据,然后进行简单的校验以后调用接口,将数据发送到后端,完成一个简单的注册的流程,那么一般来说,密码是不做加密的。但是也有一些数据库里面存放的是加密后的密码,这样有一个比较安全的地方在于,即使黑客将用户输入的文本密码得到了,也不知道具体是什么,因为密码是经过加密的。

今天就简单的将加密这块写一下,有可以用到的看一下。

js的加密没特别多的办法,常见的就三种, MD5加密、Base64加密和shal加密,那么今天就将这三种的用法写一下。

MD5加密

H5源码

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8" />
    <title>md5加密</title>
    <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
    <script src="js/md5.js" type="text/javascript" charset="utf-8"></script>
  </head>
  <body>
    <input type="password" name="" id="md5" value="" />
    <input type="button" name="" id="" value="MD5加密" onclick="testmd5()" />
  </body>
  <script type="text/javascript">
    function testmd5(){
    var password = $("#md5").val();
    var md5password = $.md5(password);
    console.log("没有加密之前的是:"+password);
    console.log("加密以后是:"+md5password);
    }
  </script>
</html>

js源码

(function($){
    var rotateLeft = function(lValue, iShiftBits) {
      return (lValue << iShiftBits) | (lValue >>> (32 - iShiftBits));
    }
    var addUnsigned = function(lX, lY) {
      var lX4, lY4, lX8, lY8, lResult;
      lX8 = (lX & 0x80000000);
      lY8 = (lY & 0x80000000);
      lX4 = (lX & 0x40000000);
      lY4 = (lY & 0x40000000);
      lResult = (lX & 0x3FFFFFFF) + (lY & 0x3FFFFFFF);
      if (lX4 & lY4) return (lResult ^ 0x80000000 ^ lX8 ^ lY8);
      if (lX4 | lY4) {
        if (lResult & 0x40000000) return (lResult ^ 0xC0000000 ^ lX8 ^ lY8);
        else return (lResult ^ 0x40000000 ^ lX8 ^ lY8);
      } else {
        return (lResult ^ lX8 ^ lY8);
      }
    }
    var F = function(x, y, z) {
      return (x & y) | ((~ x) & z);
    }
    var G = function(x, y, z) {
      return (x & z) | (y & (~ z));
    }
    var H = function(x, y, z) {
      return (x ^ y ^ z);
    }
    var I = function(x, y, z) {
      return (y ^ (x | (~ z)));
    }
    var FF = function(a, b, c, d, x, s, ac) {
      a = addUnsigned(a, addUnsigned(addUnsigned(F(b, c, d), x), ac));
      return addUnsigned(rotateLeft(a, s), b);
    };
    var GG = function(a, b, c, d, x, s, ac) {
      a = addUnsigned(a, addUnsigned(addUnsigned(G(b, c, d), x), ac));
      return addUnsigned(rotateLeft(a, s), b);
    };
    var HH = function(a, b, c, d, x, s, ac) {
      a = addUnsigned(a, addUnsigned(addUnsigned(H(b, c, d), x), ac));
      return addUnsigned(rotateLeft(a, s), b);
    };
    var II = function(a, b, c, d, x, s, ac) {
      a = addUnsigned(a, addUnsigned(addUnsigned(I(b, c, d), x), ac));
      return addUnsigned(rotateLeft(a, s), b);
    };
    var convertToWordArray = function(string) {
      var lWordCount;
      var lMessageLength = string.length;
      var lNumberOfWordsTempOne = lMessageLength + 8;
      var lNumberOfWordsTempTwo = (lNumberOfWordsTempOne - (lNumberOfWordsTempOne % 64)) / 64;
      var lNumberOfWords = (lNumberOfWordsTempTwo + 1) * 16;
      var lWordArray = Array(lNumberOfWords - 1);
      var lBytePosition = 0;
      var lByteCount = 0;
      while (lByteCount < lMessageLength) {
        lWordCount = (lByteCount - (lByteCount % 4)) / 4;
        lBytePosition = (lByteCount % 4) * 8;
        lWordArray[lWordCount] = (lWordArray[lWordCount] | (string.charCodeAt(lByteCount) << lBytePosition));
        lByteCount++;
      }
      lWordCount = (lByteCount - (lByteCount % 4)) / 4;
      lBytePosition = (lByteCount % 4) * 8;
      lWordArray[lWordCount] = lWordArray[lWordCount] | (0x80 << lBytePosition);
      lWordArray[lNumberOfWords - 2] = lMessageLength << 3;
      lWordArray[lNumberOfWords - 1] = lMessageLength >>> 29;
      return lWordArray;
    };
    var wordToHex = function(lValue) {
      var WordToHexValue = "", WordToHexValueTemp = "", lByte, lCount;
      for (lCount = 0; lCount <= 3; lCount++) {
        lByte = (lValue >>> (lCount * 8)) & 255;
        WordToHexValueTemp = "0" + lByte.toString(16);
        WordToHexValue = WordToHexValue + WordToHexValueTemp.substr(WordToHexValueTemp.length - 2, 2);
      }
      return WordToHexValue;
    };
    var uTF8Encode = function(string) {
      string = string.replace(/\x0d\x0a/g, "\x0a");
      var output = "";
      for (var n = 0; n < string.length; n++) {
        var c = string.charCodeAt(n);
        if (c < 128) {
          output += String.fromCharCode(c);
        } else if ((c > 127) && (c < 2048)) {
          output += String.fromCharCode((c >> 6) | 192);
          output += String.fromCharCode((c & 63) | 128);
        } else {
          output += String.fromCharCode((c >> 12) | 224);
          output += String.fromCharCode(((c >> 6) & 63) | 128);
          output += String.fromCharCode((c & 63) | 128);
        }
      }
      return output;
    };
    $.extend({
      md5: function(string) {
        var x = Array();
        var k, AA, BB, CC, DD, a, b, c, d;
        var S11=7, S12=12, S13=17, S14=22;
        var S21=5, S22=9 , S23=14, S24=20;
        var S31=4, S32=11, S33=16, S34=23;
        var S41=6, S42=10, S43=15, S44=21;
        string = uTF8Encode(string);
        x = convertToWordArray(string);
        a = 0x67452301; b = 0xEFCDAB89; c = 0x98BADCFE; d = 0x10325476;
        for (k = 0; k < x.length; k += 16) {
          AA = a; BB = b; CC = c; DD = d;
          a = FF(a, b, c, d, x[k+0],  S11, 0xD76AA478);
          d = FF(d, a, b, c, x[k+1],  S12, 0xE8C7B756);
          c = FF(c, d, a, b, x[k+2],  S13, 0x242070DB);
          b = FF(b, c, d, a, x[k+3],  S14, 0xC1BDCEEE);
          a = FF(a, b, c, d, x[k+4],  S11, 0xF57C0FAF);
          d = FF(d, a, b, c, x[k+5],  S12, 0x4787C62A);
          c = FF(c, d, a, b, x[k+6],  S13, 0xA8304613);
          b = FF(b, c, d, a, x[k+7],  S14, 0xFD469501);
          a = FF(a, b, c, d, x[k+8],  S11, 0x698098D8);
          d = FF(d, a, b, c, x[k+9],  S12, 0x8B44F7AF);
          c = FF(c, d, a, b, x[k+10], S13, 0xFFFF5BB1);
          b = FF(b, c, d, a, x[k+11], S14, 0x895CD7BE);
          a = FF(a, b, c, d, x[k+12], S11, 0x6B901122);
          d = FF(d, a, b, c, x[k+13], S12, 0xFD987193);
          c = FF(c, d, a, b, x[k+14], S13, 0xA679438E);
          b = FF(b, c, d, a, x[k+15], S14, 0x49B40821);
          a = GG(a, b, c, d, x[k+1],  S21, 0xF61E2562);
          d = GG(d, a, b, c, x[k+6],  S22, 0xC040B340);
          c = GG(c, d, a, b, x[k+11], S23, 0x265E5A51);
          b = GG(b, c, d, a, x[k+0],  S24, 0xE9B6C7AA);
          a = GG(a, b, c, d, x[k+5],  S21, 0xD62F105D);
          d = GG(d, a, b, c, x[k+10], S22, 0x2441453);
          c = GG(c, d, a, b, x[k+15], S23, 0xD8A1E681);
          b = GG(b, c, d, a, x[k+4],  S24, 0xE7D3FBC8);
          a = GG(a, b, c, d, x[k+9],  S21, 0x21E1CDE6);
          d = GG(d, a, b, c, x[k+14], S22, 0xC33707D6);
          c = GG(c, d, a, b, x[k+3],  S23, 0xF4D50D87);
          b = GG(b, c, d, a, x[k+8],  S24, 0x455A14ED);
          a = GG(a, b, c, d, x[k+13], S21, 0xA9E3E905);
          d = GG(d, a, b, c, x[k+2],  S22, 0xFCEFA3F8);
          c = GG(c, d, a, b, x[k+7],  S23, 0x676F02D9);
          b = GG(b, c, d, a, x[k+12], S24, 0x8D2A4C8A);
          a = HH(a, b, c, d, x[k+5],  S31, 0xFFFA3942);
          d = HH(d, a, b, c, x[k+8],  S32, 0x8771F681);
          c = HH(c, d, a, b, x[k+11], S33, 0x6D9D6122);
          b = HH(b, c, d, a, x[k+14], S34, 0xFDE5380C);
          a = HH(a, b, c, d, x[k+1],  S31, 0xA4BEEA44);
          d = HH(d, a, b, c, x[k+4],  S32, 0x4BDECFA9);
          c = HH(c, d, a, b, x[k+7],  S33, 0xF6BB4B60);
          b = HH(b, c, d, a, x[k+10], S34, 0xBEBFBC70);
          a = HH(a, b, c, d, x[k+13], S31, 0x289B7EC6);
          d = HH(d, a, b, c, x[k+0],  S32, 0xEAA127FA);
          c = HH(c, d, a, b, x[k+3],  S33, 0xD4EF3085);
          b = HH(b, c, d, a, x[k+6],  S34, 0x4881D05);
          a = HH(a, b, c, d, x[k+9],  S31, 0xD9D4D039);
          d = HH(d, a, b, c, x[k+12], S32, 0xE6DB99E5);
          c = HH(c, d, a, b, x[k+15], S33, 0x1FA27CF8);
          b = HH(b, c, d, a, x[k+2],  S34, 0xC4AC5665);
          a = II(a, b, c, d, x[k+0],  S41, 0xF4292244);
          d = II(d, a, b, c, x[k+7],  S42, 0x432AFF97);
          c = II(c, d, a, b, x[k+14], S43, 0xAB9423A7);
          b = II(b, c, d, a, x[k+5],  S44, 0xFC93A039);
          a = II(a, b, c, d, x[k+12], S41, 0x655B59C3);
          d = II(d, a, b, c, x[k+3],  S42, 0x8F0CCC92);
          c = II(c, d, a, b, x[k+10], S43, 0xFFEFF47D);
          b = II(b, c, d, a, x[k+1],  S44, 0x85845DD1);
          a = II(a, b, c, d, x[k+8],  S41, 0x6FA87E4F);
          d = II(d, a, b, c, x[k+15], S42, 0xFE2CE6E0);
          c = II(c, d, a, b, x[k+6],  S43, 0xA3014314);
          b = II(b, c, d, a, x[k+13], S44, 0x4E0811A1);
          a = II(a, b, c, d, x[k+4],  S41, 0xF7537E82);
          d = II(d, a, b, c, x[k+11], S42, 0xBD3AF235);
          c = II(c, d, a, b, x[k+2],  S43, 0x2AD7D2BB);
          b = II(b, c, d, a, x[k+9],  S44, 0xEB86D391);
          a = addUnsigned(a, AA);
          b = addUnsigned(b, BB);
          c = addUnsigned(c, CC);
          d = addUnsigned(d, DD);
        }
        var tempValue = wordToHex(a) + wordToHex(b) + wordToHex(c) + wordToHex(d);
        return tempValue.toLowerCase();
      }
    });
  })(jQuery);

效果

Base64加密

H5源码

ps:理论上这个不可以称为加密,这个只是将您的文本按照一定的编码格式重新写一遍罢了,但是可以起到一定的加密作用。

第一种写法

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8" />
    <title>base64加密</title>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
  </head>
  <body>
    <input type="password" name="" id="basepass" value="" />
    <input type="button" name="" id="" value="base加密"  onclick="basefunc(1)"/>
    <input type="button" name="" id="" value="base解密" onclick="basefunc(2)"/>
  </body>
  <script src="js/funcbase64.js" type="text/javascript" charset="utf-8"></script>
  <script type="text/javascript">
    function basefunc(e){
      var password = $("#basepass").val();
      var base = new Base64();
      var encypass = base.encode(password);
      var decryptpass = base.decode(encypass);
      if(e == 1){
        console.log("加密之前的密码是:"+password);
        console.log("加密之后的结果是:"+encypass);
      }
      else if(e == 2){
        console.log("解密之前的结果是:"+encypass);
        console.log("解密之后的结果是:"+decryptpass);
      }
    }
  </script>
</html>

js源码

function Base64() {  
    // private property  
    _keyStr = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";  
    // public method for encoding  
    this.encode = function (input) {  
        var output = "";  
        var chr1, chr2, chr3, enc1, enc2, enc3, enc4;  
        var i = 0;  
        input = _utf8_encode(input);  
        while (i < input.length) {  
            chr1 = input.charCodeAt(i++);  
            chr2 = input.charCodeAt(i++);  
            chr3 = input.charCodeAt(i++);  
            enc1 = chr1 >> 2;  
            enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);  
            enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);  
            enc4 = chr3 & 63;  
            if (isNaN(chr2)) {  
                enc3 = enc4 = 64;  
            } else if (isNaN(chr3)) {  
                enc4 = 64;  
            }  
            output = output +  
            _keyStr.charAt(enc1) + _keyStr.charAt(enc2) +  
            _keyStr.charAt(enc3) + _keyStr.charAt(enc4);  
        }  
        return output;  
    }  
    // public method for decoding  
    this.decode = function (input) {  
        var output = "";  
        var chr1, chr2, chr3;  
        var enc1, enc2, enc3, enc4;  
        var i = 0;  
        input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");  
        while (i < input.length) {  
            enc1 = _keyStr.indexOf(input.charAt(i++));  
            enc2 = _keyStr.indexOf(input.charAt(i++));  
            enc3 = _keyStr.indexOf(input.charAt(i++));  
            enc4 = _keyStr.indexOf(input.charAt(i++));  
            chr1 = (enc1 << 2) | (enc2 >> 4);  
            chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);  
            chr3 = ((enc3 & 3) << 6) | enc4;  
            output = output + String.fromCharCode(chr1);  
            if (enc3 != 64) {  
                output = output + String.fromCharCode(chr2);  
            }  
            if (enc4 != 64) {  
                output = output + String.fromCharCode(chr3);  
            }  
        }  
        output = _utf8_decode(output);  
        return output;  
    }  
    // private method for UTF-8 encoding  
    _utf8_encode = function (string) {  
        string = string.replace(/\r\n/g,"\n");  
        var utftext = "";  
        for (var n = 0; n < string.length; n++) {  
            var c = string.charCodeAt(n);  
            if (c < 128) {  
                utftext += String.fromCharCode(c);  
            } else if((c > 127) && (c < 2048)) {  
                utftext += String.fromCharCode((c >> 6) | 192);  
                utftext += String.fromCharCode((c & 63) | 128);  
            } else {  
                utftext += String.fromCharCode((c >> 12) | 224);  
                utftext += String.fromCharCode(((c >> 6) & 63) | 128);  
                utftext += String.fromCharCode((c & 63) | 128);  
            }  
        }  
        return utftext;  
    }  
    // private method for UTF-8 decoding  
    _utf8_decode = function (utftext) {  
        var string = "";  
        var i = 0;  
        var c = c1 = c2 = 0;  
        while ( i < utftext.length ) {  
            c = utftext.charCodeAt(i);  
            if (c < 128) {  
                string += String.fromCharCode(c);  
                i++;  
            } else if((c > 191) && (c < 224)) {  
                c2 = utftext.charCodeAt(i+1);  
                string += String.fromCharCode(((c & 31) << 6) | (c2 & 63));  
                i += 2;  
            } else {  
                c2 = utftext.charCodeAt(i+1);  
                c3 = utftext.charCodeAt(i+2);  
                string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));  
                i += 3;  
            }  
        }  
        return string;  
    }  
}  

第二种写法

H5源码

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8" />
    <title>base64加密</title>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
  </head>
  <body>
    <input type="password" name="" id="basepass" value="" />
    <input type="button" name="" id="" value="base加密"  onclick="basefunc(1)"/>
    <input type="button" name="" id="" value="base解密" onclick="basefunc(2)"/>
  </body>
  <script src="js/base64.js" type="text/javascript" charset="utf-8"></script>
  <script type="text/javascript">
    function basefunc(e){
      var password = $("#basepass").val();
      var encypass = Base64.encode(password);
      var decryptpass = Base64.decode(encypass);
      if(e == 1){
        console.log("加密之前的密码是:"+password);
        console.log("加密之后的结果是:"+encypass);
      }
      else if(e == 2){
        console.log("解密之前的结果是:"+encypass);
        console.log("解密之后的结果是:"+decryptpass);
      }
    }
  </script>
</html>

js源码

var Base64=  
{  
    _keyStr:"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",  
    encode:function(e){  
        var t="";  
        var n,r,i,s,o,u,a;  
        var f=0;  
        e=Base64._utf8_encode(e);  
        while(f<e.length){  
            n=e.charCodeAt(f++);  
            r=e.charCodeAt(f++);  
            i=e.charCodeAt(f++);  
            s=n>>2;  
            o=(n&3)<<4|r>>4;  
            u=(r&15)<<2|i>>6;  
            a=i&63;  
            if(isNaN(r)){  
                u=a=64  
            }else if(isNaN(i)){  
                a=64  
            }  
            t=t+this._keyStr.charAt(s)+this._keyStr.charAt(o)+this._keyStr.charAt(u)+this._keyStr.charAt(a)  
        }  
        return t  
    },  
    decode:function(e){  
        var t="";  
        var n,r,i;  
        var s,o,u,a;  
        var f=0;  
        e=e.replace(/[^A-Za-z0-9+/=]/g,"");  
        while(f<e.length){  
            s=this._keyStr.indexOf(e.charAt(f++));  
            o=this._keyStr.indexOf(e.charAt(f++));  
            u=this._keyStr.indexOf(e.charAt(f++));  
            a=this._keyStr.indexOf(e.charAt(f++));  
            n=s<<2|o>>4;  
            r=(o&15)<<4|u>>2;  
            i=(u&3)<<6|a;  
            t=t+String.fromCharCode(n);  
            if(u!=64){  
                t=t+String.fromCharCode(r)  
            }  
            if(a!=64){  
                t=t+String.fromCharCode(i)  
            }  
        }  
        t=Base64._utf8_decode(t);  
        return t  
    },  
    _utf8_encode:function(e){  
        e=e.replace(/rn/g,"n");  
        var t="";  
        for(var n=0;n<e.length;n++){  
            var r=e.charCodeAt(n);  
            if(r<128){  
                t+=String.fromCharCode(r)  
            }else if(r>127&&r<2048){  
                t+=String.fromCharCode(r>>6|192);  
                t+=String.fromCharCode(r&63|128)  
            }else{  
                t+=String.fromCharCode(r>>12|224);  
                t+=String.fromCharCode(r>>6&63|128);  
                t+=String.fromCharCode(r&63|128)  
            }  
        }  
        return t  
    },  
    _utf8_decode:function(e){  
        var t="";  
        var n=0;  
        var r=c1=c2=0;  
        while(n<e.length){  
            r=e.charCodeAt(n);  
            if(r<128){  
                t+=String.fromCharCode(r);  
                n++  
            }else if(r>191&&r<224){  
                c2=e.charCodeAt(n+1);  
                t+=String.fromCharCode((r&31)<<6|c2&63);  
                n+=2  
            }else{  
                c2=e.charCodeAt(n+1);  
                c3=e.charCodeAt(n+2);  
                t+=String.fromCharCode((r&15)<<12|(c2&63)<<6|c3&63);  
                n+=3  
            }  
        }  
        return t  
    }  
};  

效果

sha1加密

H5源码

<!DOCTYPE html>
<html>
  <head>
    <meta charset="utf-8" />
    <title>shal加密</title>
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
    <script src="js/shal.js" type="text/javascript" charset="utf-8"></script>
  </head>
  <body>
    <input type="password" name="" id="md5" value="" />
    <input type="button" name="" id="" value="hex_sha1加密" onclick="testshal(1)" />
    <input type="button" name="" id="" value="b64_sha1加密" onclick="testshal(2)" />
    <input type="button" name="" id="" value="str_sha1加密" onclick="testshal(3)" />
  </body>
  <script type="text/javascript">
    function testshal(e){
    var password = $("#md5").val();
    console.log("没有加密之前的是:"+password);
      if(e == 1){
        var shalpassword = hex_sha1(password);
        console.log("hex_sha1方式加密后是:"+shalpassword);
      }
      else if(e == 2){
        var shalpassword = b64_sha1(password);
        console.log("b64_sha1方式加密后是:"+shalpassword);
      }
      else if(e == 3){
        var shalpassword = str_sha1(password);
        console.log("str_sha1方式加密后是:"+shalpassword);
      }
    }
  </script>
</html>

js源码

var hexcase = 0; /* 十六进制输出格式。0 -小写;1 -大写 */  
var b64pad = ""; /* base- 64填充字符。“=”表示严格的RFC合规性 */  
var chrsz = 8; /* 每个输入字符的位数。8 - ASCII;16 -统一码 */  
function hex_sha1(s) {  
    return binb2hex(core_sha1(str2binb(s), s.length * chrsz));  
}  
function b64_sha1(s) {  
    return binb2b64(core_sha1(str2binb(s), s.length * chrsz));  
}  
function str_sha1(s) {  
    return binb2str(core_sha1(str2binb(s), s.length * chrsz));  
}  
function hex_hmac_sha1(key, data) {  
    return binb2hex(core_hmac_sha1(key, data));  
}  
function b64_hmac_sha1(key, data) {  
    return binb2b64(core_hmac_sha1(key, data));  
}  
function str_hmac_sha1(key, data) {  
    return binb2str(core_hmac_sha1(key, data));  
}  
function sha1_vm_test() {  
    return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";  
}  
function core_sha1(x, len) {  
    x[len >> 5] |= 0x80 << (24 - len % 32);  
    x[((len + 64 >> 9) << 4) + 15] = len;  
    var w = Array(80);  
    var a = 1732584193;  
    var b = -271733879;  
    var c = -1732584194;  
    var d = 271733878;  
    var e = -1009589776;  
    for (var i = 0; i < x.length; i += 16) {  
        var olda = a;  
        var oldb = b;  
        var oldc = c;  
        var oldd = d;  
        var olde = e;  
        for (var j = 0; j < 80; j++) {  
            if (j < 16) w[j] = x[i + j];  
            else w[j] = rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1);  
            var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j)));  
            e = d;  
            d = c;  
            c = rol(b, 30);  
            b = a;  
            a = t;  
        }  
        a = safe_add(a, olda);  
        b = safe_add(b, oldb);  
        c = safe_add(c, oldc);  
        d = safe_add(d, oldd);  
        e = safe_add(e, olde);  
    }  
    return Array(a, b, c, d, e);  
}  
function sha1_ft(t, b, c, d) {  
    if (t < 20) return (b & c) | ((~b) & d);  
    if (t < 40) return b ^ c ^ d;  
    if (t < 60) return (b & c) | (b & d) | (c & d);  
    return b ^ c ^ d;  
}  
function sha1_kt(t) {  
    return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514;  
}  
function core_hmac_sha1(key, data) {  
    var bkey = str2binb(key);  
    if (bkey.length > 16) bkey = core_sha1(bkey, key.length * chrsz);  
    var ipad = Array(16),  
        opad = Array(16);  
    for (var i = 0; i < 16; i++) {  
        ipad[i] = bkey[i] ^ 0x36363636;  
        opad[i] = bkey[i] ^ 0x5C5C5C5C;  
    }  
    var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz);  
    return core_sha1(opad.concat(hash), 512 + 160);  
}  
function safe_add(x, y) {  
    var lsw = (x & 0xFFFF) + (y & 0xFFFF);  
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);  
    return (msw << 16) | (lsw & 0xFFFF);  
}  
function rol(num, cnt) {  
    return (num << cnt) | (num >>> (32 - cnt));  
}  
function str2binb(str) {  
    var bin = Array();  
    var mask = (1 << chrsz) - 1;  
    for (var i = 0; i < str.length * chrsz; i += chrsz)  
    bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32);  
    return bin;  
}  
function binb2str(bin) {  
    var str = "";  
    var mask = (1 << chrsz) - 1;  
    for (var i = 0; i < bin.length * 32; i += chrsz)  
    str += String.fromCharCode((bin[i >> 5] >>> (24 - i % 32)) & mask);  
    return str;  
}  
function binb2hex(binarray) {  
    var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";  
    var str = "";  
    for (var i = 0; i < binarray.length * 4; i++) {  
        str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) + hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF);  
    }  
    return str;  
}  
function binb2b64(binarray) {  
    var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";  
    var str = "";  
    for (var i = 0; i < binarray.length * 4; i += 3) {  
        var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) | (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) | ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF);  
        for (var j = 0; j < 4; j++) {  
            if (i * 8 + j * 6 > binarray.length * 32) str += b64pad;  
            else str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F);  
        }  
    }  
    return str;  
}  

效果

维基百科之加密原理

相关文章
|
3月前
|
数据安全/隐私保护 Python
Python中的MD5加密“解密”
Python中的MD5加密“解密”
|
2月前
|
存储 Java 数据库
密码专辑:对密码加盐加密,对密码进行md5加密,封装成密码工具类
这篇文章介绍了如何在Java中通过加盐和加密算法(如MD5和SHA)安全地存储密码,并提供了一个密码工具类PasswordUtils和密码编码类PasswordEncoder的实现示例。
34 10
密码专辑:对密码加盐加密,对密码进行md5加密,封装成密码工具类
|
2月前
|
NoSQL Java Redis
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
这篇文章介绍了如何使用Spring Boot整合Apache Shiro框架进行后端开发,包括认证和授权流程,并使用Redis存储Token以及MD5加密用户密码。
31 0
shiro学习四:使用springboot整合shiro,正常的企业级后端开发shiro认证鉴权流程。使用redis做token的过滤。md5做密码的加密。
|
2月前
|
安全 算法 Java
数据库信息/密码加盐加密 —— Java代码手写+集成两种方式,手把手教学!保证能用!
本文提供了在数据库中对密码等敏感信息进行加盐加密的详细教程,包括手写MD5加密算法和使用Spring Security的BCryptPasswordEncoder进行加密,并强调了使用BCryptPasswordEncoder时需要注意的Spring Security配置问题。
152 0
数据库信息/密码加盐加密 —— Java代码手写+集成两种方式,手把手教学!保证能用!
|
2月前
|
数据安全/隐私保护 Python
Python中的MD5加密“解密”
Python中的MD5加密“解密”
|
3月前
|
存储 安全 算法
RSA在手,安全我有!Python加密解密技术,让你的数据密码坚不可摧
【9月更文挑战第11天】在数字化时代,信息安全至关重要。传统的加密方法已难以应对日益复杂的网络攻击。RSA加密算法凭借其强大的安全性和广泛的应用场景,成为保护敏感数据的首选。本文介绍RSA的基本原理及在Python中的实现方法,并探讨其优势与挑战。通过使用PyCryptodome库,我们展示了RSA加密解密的完整流程,帮助读者理解如何利用RSA为数据提供安全保障。
134 5
|
2月前
|
IDE 开发工具 数据安全/隐私保护
Python编程实现批量md5加密pdf文件
Python编程实现批量md5加密pdf文件
|
3月前
|
安全 数据安全/隐私保护 Python
情书也能加密?Python AES&RSA,让每一份数据都充满爱的密码
【9月更文挑战第8天】在这个数字化时代,情书不再局限于纸笔,也可能以电子形式在网络中传递。为了确保其安全,Python提供了AES和RSA等加密工具,为情书编织爱的密码。首先,通过安装pycryptodome库,我们可以利用AES对称加密算法高效保护数据;接着,使用RSA非对称加密算法加密AES密钥和IV,进一步增强安全性。即使情书被截获,没有正确密钥也无法解读内容。让我们用Python为爱情编织一张安全的网,守护每份珍贵情感。
50 2
|
8天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者更好地保护自己的网络安全和信息安全。
|
1天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。