【C++类和对象下:解锁面向对象编程的奇妙世界】(上)

简介: 【C++类和对象下:解锁面向对象编程的奇妙世界】

【本节目标】


  • 1. 再谈构造函数
  • 2. Static成员
  • 3. 友元
  • 4. 内部类
  • 5.匿名对象
  • 6.拷贝对象时的一些编译器优化
  • 7. 再次理解封装


1. 再谈构造函数


1.1 构造函数体赋值


在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。

#include <iostream>
using namespace std;
class Date
{
public:
    Date(int year, int month, int day)
    {
        // 函数体内初始化
        _year = year;
        _month = month;
        _day = day;
    }
private:
    int _year;
    int _month;
    int _day;
};
int main()
{
    Date d1(2023, 11, 7);
    return 0;
}


虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量 的初始化,构造函数体中的语句只能将其称为赋初值,而不能称作初始化。因为初始化只能初始 化一次,而构造函数体内可以多次赋值。


1.2 初始化列表


初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟 一个放在括号中的初始值或表达式。

#include <iostream>
using namespace std;
class Date
{
public:
    Date(int year, int month, int day)
        : _year(year)
        , _month(month)
        , _day(day)
    {}// 初始化列表
private:
    int _year;
    int _month;
    int _day;
};
int main()
{
    Date d1(2023, 11, 7);
    return 0;
}


【注意】


1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)

2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

  • 引用成员变量
  • const成员变量
  • 自定义类型成员(且该类没有默认构造函数时)
#include <iostream>
using namespace std;
class A
{
public:
  A(int a = 1)
    :_a(a)
  {
    cout << "A(int a = 1)" << endl;
  }
private:
  int _a;
};
class B
{
public:
  B(int ref, int year, int month, int day)
    :_ref(ref)
    ,_n(10)
  {
    // 函数体内初始化
    // 这里的三个成员没有在初始化列表显示定义
    // 但是这里也会定义,只是内置类型默认给的随机值
    // 如果时自定义类型成员会去调用它的默认构造函数
    _year = year;
    _month = month;
    _day = day;
  }
private:
  //声明,没有开空间,对象定义时才开空间
  int _year;
  int _month;
  int _day;
  A _aobj;  // 此时有默认构造函数
  int& _ref;  // 引用:必须在定义的时候初始化
  const int _n; // const:必须在定义的时候初始化
};
int main()
{
  //定义:对象整体定义
  //每个成员在初始化列表处定义
  B b(1, 2023, 11, 7);
  return 0;
}


运行结果:


如果我们类A没有默认构造呢?

#include <iostream>
using namespace std;
class A
{
public:
  A(int a)
    :_a(a)
  {
    cout << "A(int a)" << endl;
  }
private:
  int _a;
};
class B
{
public:
  B(int ref, int year, int month, int day)
    :_aobj(1)
    ,_ref(ref)
    ,_n(10)
    ,_year(2) //显示写了就不会用缺省值
  {
    // 函数体内初始化
    // 这里的三个成员没有在初始化列表显示定义
    // 但是这里也会定义,只是内置类型默认给的随机值
    // 如果时自定义类型成员会去调用它的默认构造函数
    _year = year;
    _month = month;
    _day = day;
  }
private:
  //声明,没有开空间,对象定义时才开空间
  int _year = 1;//缺省值给参数列表
  int _month;
  int _day;
  A _aobj;  // 没有默认构造函数
  int& _ref;  // 引用:必须在定义的时候初始化
  const int _n; // const:必须在定义的时候初始化
};
int main()
{
  //定义:对象整体定义
  //每个成员在初始化列表处定义
  B b(1, 2023, 11, 7);
  return 0;
}


总结:自定义类型成员(且该类没有默认构造函数时),我们就要用要初始化列表去初始化。有些自定义成员想要显示初始化,自己控制初始化,尽量使用初始化列表,但是我们也要函数体初始化,因为优秀初始化或者检查的工作,初始化列表不能全部搞定,比如malloc开辟空间的检查。它们能混着用。初始化列表不同同时出现相同的成员,但是初始化列表和函数体可以同时出现。


3. 尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量, 一定会先使用初始化列表初始化。

#include <iostream>
using namespace std;
class Time
{
public:
    // 默认构造函数之一
  Time(int hour = 0)
    :_hour(hour)
  {
    cout << "Time()" << endl;
  }
private:
  int _hour;
};
class Date
{
public:
  Date(int day)
    //对于自定义类型成员变量, 一定会先使用初始化列表初始化。
  {}
private:
  int _day;
  Time _t;
};
int main()
{
  Date d(1);
    return 0;
}


4. 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关

#include <iostream>
using namespace std;
class A
{
public:
    A(int a)
        :_a1(a)
        , _a2(_a1)
    {}
    void Print() {
        cout << _a1 << " " << _a2 << endl;
    }
private:
    int _a2;
    int _a1;
};
int main() {
    A aa(1);
    aa.Print();
}


成员变量在类中声明次序就是其在初始化列表中的初始化顺序,这里先初始化的是_a2,用_a1初始化_a2,由于此时_a1还未初始化,所以此时是随机值,随后再初始化_a1,用a初始化_a1,此时显示给了值,所以_a1被初始化为1,建议声明和初始化列表顺序保持一致,避免出现理解问题。


1.3 explicit关键字


构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值 的构造函数,还具有类型转换的作用。

#include <iostream>
using namespace std;
class A
{
public:
  A(int a)
    :_a(a)
  {}
  A(int *p){}
private:
  int _a = 0;
};
int main()
{
  A a1(1);
  A a2(2);
  // 内置类型对象 隐式转换成自定义类型对象
  // 这里会形成一个临时变量A(3),然后拷贝构造给a3
  // 但是这里支持这个转换是有条件的 - 通过构造函数实现
  // 是有A的int单参数构造函数
  A a3 = 3;
  int* p = nullptr;
  //A a4 = p; // error C2440: “初始化”: 无法从“int *”转换为“A”
  //A(int *p){}写上这个就不会报错了
  // 这里不能引用不是因为类型不同
  // 是因为产生的临时变量具有常属性
  // 这里需要加上const
  // A& ra = 3;//error C2440: “初始化”: 无法从“int”转换为“A &”
  const A& ra = 3;
  return 0;
}


用explicit修饰构造函数,将会禁止构造函数的隐式转换。

#include <iostream>
using namespace std;
class A
{
public:
  explicit A(int a)
    :_a(a)
  {}
private:
  int _a = 0;
};
int main()
{
  A a1(1);
  A a2(2);
  // 内置类型对象 隐式转换成自定义类型对象
  // 这里会形成一个临时变量A(3),然后拷贝构造给a3
  // 但是这里支持这个转换是有条件的 - 通过构造函数实现
  // 是有A的int单参数构造函数
  // 如果不想让隐式类型转换发生,构造函数加上explicit
  //A a3 = 3;//error:C2440: “初始化”: 无法从“int”转换为“A”
  //但是我们可以强转
  A a3 = A(3);
  const A& ra = A(3);
  return 0;
}


多个参数的构造函数,此时还具有具有类型转换作用嘛?C++加入了多个参数的构造函数。

#include <iostream>
using namespace std;
class Date
{
public:
  //多个参数的构造函数,半缺省,其他两个参数给了缺省值
  //隐式转化,同样支持传一个参数的半缺省(全缺省)的构造函数
  Date(int year, int month = 1, int day = 1)
    :_year(year)
    ,_month(month)
    ,_day(day)
  {}
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
  Date d1(2023, 11, 9);
  //这里编译运行通过,但是结果不对
  //这里是逗号表达式,结果year被改为12
  //月份和天数都是默认没有传参,使用的是缺省值
  //等价于Date d2 = 12;
  Date d2 = (2002, 12, 12);
  Date d3 = 2023;
  //多参数
  //C++11支持
  Date d4 = { 2023, 11, 9 };
  //产生临时变量
  const Date& d5 = { 2023, 11, 9 };
  return 0;
}


运行结果:


2. static成员


2.1 概念


声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用 static修饰的成员函数,称之为静态成员函数静态成员变量一定要在类外进行初始化


问:计算程序中创建出了多少个类对象。

#include <iostream>
using namespace std;
class A
{
public:
  A() {}
  A(const A& t) {}
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;//传值返回形成一次拷贝
}
int main()
{
  A aa;
  func();
  return 0;
}


我们可以定义一个全局变量count来计算。 bmvv

#include <iostream>
using namespace std;
int count = 0;//定义全局变量
class A
{
public:
  A() { ++count; }
  A(const A& t) { ++count; }
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  cout << count << endl;
  return 0;
}


但是这里代码报错了。


因为C++库中还有一个count函数,和我们这里定义的全局变量出现冲突,这里可以用我们的命名空间解决。

#include <iostream>
using namespace std;
namespace yu 
{
  int count = 0;//定义全局变量
}
class A
{
public:
  A() { ++yu::count; }
  A(const A& t) { ++yu::count; }
  ~A() {}
private:
};
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  cout << yu::count << endl;
  return 0;
}


输出结果:


但是这里的全局变量不太好,如果我们后面有一个B类也想求创建了多少个对象,此时还需要将count变量重置为0,太繁琐了。那我们可以将这个count变量变成这个类的成员变量,这样就和其他的类没有冲突了。但是这里要注意一下,此时我们的count是属于某个对象的,每个对象都有一个独自的count变量,此时加加的是每一个对象的count变量,我们这里要将全局变量成为一个类的专属,此时就要使用static修饰该成员变量。

#include <iostream>
using namespace std;
class A
{
public:
  //c++对象都是构造或者拷贝过来的
  A() { ++count; }
  A(const A& t) { ++count; }
  ~A() {}
//private:
  //static int count = 0;//这里不支持给缺省值
  //因为初始化列表是初始化某一个对象,这个count不属于某一个对象
  // 规定类里面声明,类外定义
  static int count;
  //普通的成员变量要走初始化列表,缺省值是给初始化列表的
};
int A::count = 0;//定义
A func()
{
  A aa;
  return aa;
}
int main()
{
  A aa;
  func();
  //公有的情况下访问count
  //属于整个类,属于这个类的所有对象
    //受访问限定符限制
  cout << A::count << endl;
  cout << aa.count << endl;
  cout << &A::count << endl;
  cout << &aa.count << endl;
  return 0;
}

运行结果:


【C++类和对象下:解锁面向对象编程的奇妙世界】(下):https://developer.aliyun.com/article/1425506

相关文章
|
9天前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
12天前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
9天前
|
安全 编译器 C语言
【C++篇】深度解析类与对象(中)
在上一篇博客中,我们学习了C++类与对象的基础内容。这一次,我们将深入探讨C++类的关键特性,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载、以及取地址运算符的重载。这些内容是理解面向对象编程的关键,也帮助我们更好地掌握C++内存管理的细节和编码的高级技巧。
|
9天前
|
存储 程序员 C语言
【C++篇】深度解析类与对象(上)
在C++中,类和对象是面向对象编程的基础组成部分。通过类,程序员可以对现实世界的实体进行模拟和抽象。类的基本概念包括成员变量、成员函数、访问控制等。本篇博客将介绍C++类与对象的基础知识,为后续学习打下良好的基础。
|
1月前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
71 19
|
1月前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
56 13
|
1月前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
57 5
|
1月前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
47 5
|
1月前
|
Serverless 编译器 C++
【C++面向对象——类的多态性与虚函数】计算图像面积(头歌实践教学平台习题)【合集】
本任务要求设计一个矩形类、圆形类和图形基类,计算并输出相应图形面积。相关知识点包括纯虚函数和抽象类的使用。 **目录:** - 任务描述 - 相关知识 - 纯虚函数 - 特点 - 使用场景 - 作用 - 注意事项 - 相关概念对比 - 抽象类的使用 - 定义与概念 - 使用场景 - 编程要求 - 测试说明 - 通关代码 - 测试结果 **任务概述:** 1. **图形基类(Shape)**:包含纯虚函数 `void PrintArea()`。 2. **矩形类(Rectangle)**:继承 Shape 类,重写 `Print
51 4
|
1月前
|
设计模式 IDE 编译器
【C++面向对象——类的多态性与虚函数】编写教学游戏:认识动物(头歌实践教学平台习题)【合集】
本项目旨在通过C++编程实现一个教学游戏,帮助小朋友认识动物。程序设计了一个动物园场景,包含Dog、Bird和Frog三种动物。每个动物都有move和shout行为,用于展示其特征。游戏随机挑选10个动物,前5个供学习,后5个用于测试。使用虚函数和多态实现不同动物的行为,确保代码灵活扩展。此外,通过typeid获取对象类型,并利用strstr辅助判断类型。相关头文件如&lt;string&gt;、&lt;cstdlib&gt;等确保程序正常运行。最终,根据小朋友的回答计算得分,提供互动学习体验。 - **任务描述**:编写教学游戏,随机挑选10个动物进行展示与测试。 - **类设计**:基类
39 3