【函数栈帧解析:代码的迷人堆积和无限嵌套】(上)

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 【函数栈帧解析:代码的迷人堆积和无限嵌套】

本章重点


一、何为函数栈帧

二、函数栈帧特性 - 同栈 - 后进先出

三、认识内存空间布局图

四、认识相关寄存器

五、认识相关汇编命令

六、测试代码:

七、函数栈帧全过程


要解决的问题


  • 局部变量是怎么创建的?
  • 为什么局部变量的值是随机值?
  • 函数是怎么传参的?传参的顺序是怎么样的?
  • 形参和实参是什么关系?
  • 函数调用是怎么做的?
  • 函数调用结束后怎么返回的?


一、何为函数栈帧


 函数栈帧(Function Stack Frame),也被称为调用栈帧(Call Stack Frame),是在计算机程序中用于管理函数调用和执行的一种数据结构。每当函数被调用时,都会创建一个新的函数栈帧,用于存储该函数的局部变量、参数、返回地址和其他执行相关的信息。当函数执行完毕或返回时,相应的函数栈帧将被销毁,控制权回到上一个函数的栈帧中。


二、函数栈帧特性 - 同栈 - 后进先出


       函数栈帧的管理遵循一种后进先出(Last-In, First-Out,LIFO)的原则。这意味着最后调用的函数的栈帧会首先被执行,然后在函数返回时销毁,程序控制权回到上一个函数的栈帧中,以此类推,直到回到主程序的栈帧,整个程序执行完毕。


三、认识内存空间布局图



栈(Stack):


栈是一种线性数据结构,用于存储函数调用时的局部变量、函数参数以及函数调用的返回地址。

栈内存是有限的,以栈帧的方式分配和释放,遵循后进先出(Last-In, First-Out,LIFO)原则。

栈内存的生命周期与函数调用关联,当函数返回时,其栈帧上的数据会被销毁。


堆(Heap):


堆是一块较大的、动态分配的内存区域,用于存储程序运行时动态分配的数据,如动态分配的对象和数组。

堆内存的生命周期不受函数调用的影响,需要手动分配和释放,否则可能导致内存泄漏。

在C中,通常使用malloc()、calloc()和realloc()等函数来分配堆内存,使用free()来释放堆内存。


全局变量区(Global Variables):

全局变量区存储程序中的全局变量,这些变量在整个程序的生命周期内都可访问。

全局变量在程序启动时被分配,在程序结束时被释放。


常量区(Constants):

常量区存储常量数据,如字符串文字和全局常量。

这些数据在程序运行期间是只读的。


代码区(Code):

代码区存储程序的二进制代码,包括所有函数的机器代码。

代码区通常是只读的,不允许修改程序代码。


四、认识相关寄存器


  • eax:通用寄存器,保留临时数据,常用于返回值
  • ebx:通用寄存器,保留临时数据
  • ebp:栈底寄存器
  • esp:栈顶寄存器
  • eip:指令寄存器,保存当前指令的下一条指令的地址

注:ebp和esp主要用于维护当前存在的这个函数栈帧。


问:函数是被调用的,那main函数呢???它是谁调用的???


 在VS2013,main函数也是被其他函数调用的,该函数是_tmainCRTStartup,而该函数又是mainCRTStartup函数调用的,而mainCRTStartup函数则是由操作系统调用的。所以从编程者的角度来看,main函数似乎是程序的入口点,但实际上,在特定的编程环境中,它是由启动代码调用的。这些启动代码负责设置程序环境并确保main函数能够正确执行。


五、认识相关汇编命令


  • mov:数据转移指令
  • push:数据入栈,同时esp栈顶寄存器也要发生改变
  • pop:数据弹出至指定位置,同时esp栈顶寄存器也要发生改变
  • sub:减法命令
  • add:加法命令
  • call:函数调用,1. 压入返回地址 2. 转入目标函数
  • jump:通过修改eip,转入目标函数,进行调用
  • ret:恢复返回地址,压入eip,类似pop eip命令
  • lea:将表达式addr的值放入寄存器


六、测试代码:


#include<stdio.h>
int Add(int x, int y)
{
  int z = 0;
  z = x + y;
  return z;
}
int main()
{
  int a = 10;
  int b = 20;
  int c = 0;
  c = Add(a, b);
  printf("%d\n", c);
  return 0;
}


七、函数栈帧全过程


1.ebp寄存器push压栈,同时esp栈顶寄存器地址值改变 - 变小



2.ebp寄存器数据转移到esp寄存器



3.0E4h的十进制是288,sub减法指令,此时开始创建main函数栈帧,main函数此时空间大小就是ebp寄存器-esp寄存器的差 = 0E4h



4.ebx寄存器,esi寄存器和edi寄存器push压栈,同时esp栈顶寄存器地址值改变 - 变小



5. 将表达式ebp-24h的值放入edi寄存器



【函数栈帧解析:代码的迷人堆积和无限嵌套】(下):https://developer.aliyun.com/article/1424913

相关文章
|
3月前
|
编译器 程序员 C语言
精简函数栈帧:优化创建和销毁过程的完全解析(建议收藏,提升内功)
精简函数栈帧:优化创建和销毁过程的完全解析(建议收藏,提升内功)
|
14天前
|
自然语言处理 搜索推荐 数据安全/隐私保护
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
鸿蒙登录页面设计展示了 HarmonyOS 5.0(Next)的未来美学理念,结合科技与艺术,为用户带来视觉盛宴。该页面使用 ArkTS 开发,支持个性化定制和无缝智能设备连接。代码解析涵盖了声明式 UI、状态管理、事件处理及路由导航等关键概念,帮助开发者快速上手 HarmonyOS 应用开发。通过这段代码,开发者可以了解如何构建交互式界面并实现跨设备协同工作,推动智能生态的发展。
109 10
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
|
1月前
|
PHP 开发者 容器
PHP命名空间深度解析:避免命名冲突与提升代码组织####
本文深入探讨了PHP中命名空间的概念、用途及最佳实践,揭示其在解决全局命名冲突、提高代码可维护性方面的重要性。通过生动实例和详尽分析,本文将帮助开发者有效利用命名空间来优化大型项目结构,确保代码的清晰与高效。 ####
31 1
|
2月前
|
机器学习/深度学习 存储 人工智能
强化学习与深度强化学习:深入解析与代码实现
本书《强化学习与深度强化学习:深入解析与代码实现》系统地介绍了强化学习的基本概念、经典算法及其在深度学习框架下的应用。从强化学习的基础理论出发,逐步深入到Q学习、SARSA等经典算法,再到DQN、Actor-Critic等深度强化学习方法,结合Python代码示例,帮助读者理解并实践这些先进的算法。书中还探讨了强化学习在无人驾驶、游戏AI等领域的应用及面临的挑战,为读者提供了丰富的理论知识和实战经验。
70 5
|
2月前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
162 10
|
2月前
|
前端开发 JavaScript 开发者
揭秘前端高手的秘密武器:深度解析递归组件与动态组件的奥妙,让你代码效率翻倍!
【10月更文挑战第23天】在Web开发中,组件化已成为主流。本文深入探讨了递归组件与动态组件的概念、应用及实现方式。递归组件通过在组件内部调用自身,适用于处理层级结构数据,如菜单和树形控件。动态组件则根据数据变化动态切换组件显示,适用于不同业务逻辑下的组件展示。通过示例,展示了这两种组件的实现方法及其在实际开发中的应用价值。
46 1
|
3月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
115 2
|
3月前
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
51 3
|
3月前
|
SQL 监控 关系型数据库
SQL错误代码1303解析与处理方法
在SQL编程和数据库管理中,遇到错误代码是常有的事,其中错误代码1303在不同数据库系统中可能代表不同的含义
|
4月前
|
敏捷开发 安全 测试技术
软件测试的艺术:从代码到用户体验的全方位解析
本文将深入探讨软件测试的重要性和实施策略,通过分析不同类型的测试方法和工具,展示如何有效地提升软件质量和用户满意度。我们将从单元测试、集成测试到性能测试等多个角度出发,详细解释每种测试方法的实施步骤和最佳实践。此外,文章还将讨论如何通过持续集成和自动化测试来优化测试流程,以及如何建立有效的测试团队来应对快速变化的市场需求。通过实际案例的分析,本文旨在为读者提供一套系统而实用的软件测试策略,帮助读者在软件开发过程中做出更明智的决策。

推荐镜像

更多