【Linux系统编程】程序地址空间

简介: 【Linux系统编程】程序地址空间

进程地址空间


       进程地址空间是指每个进程在计算机内存中所占用的地址空间。地址空间是指能被访问的内存地址范围,它由若干个连续的内存块组成。每个进程都有自己的地址空间,这意味着每个进程都有自己的内存地址范围,不会与其他进程冲突。进程地址空间通常被划分为几个部分,包括代码段、数据段、堆和栈等,它是一种特定的数据结构,进程task_struct内部指向其结构,次结构在系统中叫做mm_struct。具体的结构分布如下图:


5c289a503cf84c07bf17bba10214e7c4.png


下面是在Linux下运用代码演示其地址:


[zhujunhao@bogon code]$ cat test.cpp
#include <iostream>
#include <unistd.h>
#include <cstdio>
using namespace std;
int main()
{
    char* s = new char[5];
    cout << "&s: " << &s << endl;
    int n = 8;
    cout << "&n: " << &n << endl;
    return 0;
}
[zhujunhao@bogon code]$ ./test.exe
//可看出堆区地址高,对应上面进程地址空间
&s: 0x7fff23280dc8
&n: 0x7fff23280dc4


       在vs下的测试可能还不一样,数据可能会出现异常,在Linux下可以测试出。这时因为Windows下出于安全的考虑,可能会对齐做出调整,Linux下也会做出安全考虑,只不过比Windows较为“ 优雅 ”。


物理地址与虚拟地址


       物理地址是系统内存中真正意义上存储数据所对应的一种地址,虚拟地址是模拟来的一种地址,通常与物理地址建立联系,然后从物理地址中对数据做出改变。我们平常使用C/C++中的地址都是虚拟地址。我们先来观察以下代码。


[zhujunhao@bogon code]$ cat code.cpp
#include <iostream>
#include <cstdio>
#include <unistd.h>
using namespace std;
int a = 100;
int main()
{
    pid_t p = fork();
    if (p == 0) {
        cout << "Child:" << endl;
        a = 200;
        cout << "   a = " << a << "  " << "&a = " << &a << endl; 
    }
    else {
        cout << "Father:" << endl;
        cout << "   a = " << a << "  " << "&a = " << &a << endl;
    }
    return 0;
}
[zhujunhao@bogon code]$ g++ -o code.exe code.cpp
[zhujunhao@bogon code]$ ./code.exe
//发现地址一样,但数据不一样
Father:
   a = 100  &a = 0x601074
Child:
   a = 200  &a = 0x601074

       注意,由于数据明显不一样,所以以上的地址不是物理地址,是虚拟地址/线性地址。也就是说,我们所用到的所有地址,全都不是物理地址,是虚拟或线性地址,而物理地址,用户一概看不到,由OS统一管理,其中,OS必须负责将虚拟地址转化成物理地址。


       在以上代码中,当子进程修改变量时,系统将会找到从子进程所对应的进程地址空间中的虚拟地址对应的物理地址,在物理地址内部开辟一块自己存储数据的空间,修改数据时将会修改从虚拟地址到物理地址的眏射表,眏射表将会修改那块存储数据的空间中的数据并重新建立两地址转换间的眏射关系,原本的数据不会被影响,所以,父子进程虽然虚拟地址一样,但数据不一样。


       系统之所以这样设计原因有以下三点:


       1,将物理内存从无序变有序。如果让让进程直接访问内存的话,那么每个进程存在内存中的位置都是不一样的,将会增加操作系统管理的成本。


       2,将内存管理和进程管理进行耦合。虚拟地址负责管理进程,物理地址负责管理内存。


       3,虚拟地址的设计间接保护了内存安全。如若直接访问物理地址,当用户胡乱操作时,将会造成不可逆转的损坏,虚拟地址的使用对其做出了拦截,保证了系统安全。


相关文章
|
11天前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
47 3
|
11天前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
36 2
|
5天前
|
Ubuntu Linux 网络安全
linux系统ubuntu中在命令行中打开图形界面的文件夹
在Ubuntu系统中,通过命令行打开图形界面的文件夹是一个高效且实用的操作。无论是使用Nautilus、Dolphin还是Thunar,都可以根据具体桌面环境选择合适的文件管理器。通过上述命令和方法,可以简化日常工作,提高效率。同时,解决权限问题和图形界面问题也能确保操作的顺利进行。掌握这些技巧,可以使Linux操作更加便捷和灵活。
13 3
|
11天前
|
安全 网络协议 Linux
本文详细介绍了 Linux 系统中 ping 命令的使用方法和技巧,涵盖基本用法、高级用法、实际应用案例及注意事项。
本文详细介绍了 Linux 系统中 ping 命令的使用方法和技巧,涵盖基本用法、高级用法、实际应用案例及注意事项。通过掌握 ping 命令,读者可以轻松测试网络连通性、诊断网络问题并提升网络管理能力。
43 3
|
14天前
|
安全 Linux 数据安全/隐私保护
在 Linux 系统中,查找文件所有者是系统管理和安全审计的重要技能。
在 Linux 系统中,查找文件所有者是系统管理和安全审计的重要技能。本文介绍了使用 `ls -l` 和 `stat` 命令查找文件所有者的基本方法,以及通过文件路径、通配符和结合其他命令的高级技巧。还提供了实际案例分析和注意事项,帮助读者更好地掌握这一操作。
34 6
|
14天前
|
Linux
在 Linux 系统中,`find` 命令是一个强大的文件查找工具
在 Linux 系统中,`find` 命令是一个强大的文件查找工具。本文详细介绍了 `find` 命令的基本语法、常用选项和具体应用示例,帮助用户快速掌握如何根据文件名、类型、大小、修改时间等条件查找文件,并展示了如何结合逻辑运算符、正则表达式和排除特定目录等高级用法。
47 6
|
15天前
|
监控 网络协议 算法
Linux内核优化:提升系统性能与稳定性的策略####
本文深入探讨了Linux操作系统内核的优化策略,旨在通过一系列技术手段和最佳实践,显著提升系统的性能、响应速度及稳定性。文章首先概述了Linux内核的核心组件及其在系统中的作用,随后详细阐述了内存管理、进程调度、文件系统优化、网络栈调整及并发控制等关键领域的优化方法。通过实际案例分析,展示了这些优化措施如何有效减少延迟、提高吞吐量,并增强系统的整体健壮性。最终,文章强调了持续监控、定期更新及合理配置对于维持Linux系统长期高效运行的重要性。 ####
|
10天前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
92 6
|
19天前
|
缓存 监控 Linux
|
22天前
|
Linux Shell 数据安全/隐私保护
下一篇
无影云桌面