【矩阵快速幂】封装类及测试用例及样例

简介: 【矩阵快速幂】封装类及测试用例及样例

封装类

核心代码

class CMat
{
public:
  // 矩阵乘法
  static vector<vector<long long>> multiply(const vector<vector<long long>>& a, const vector<vector<long long>>& b) {
    const int r = a.size(), c = b.front().size(),iK = a.front().size();
    assert(iK == b.size());
    vector<vector<long long>> ret(r, vector<long long>(c));
    for (int i = 0; i < r; i++)
    {
      for (int j = 0; j < c ; j++) 
      {
        for (int k = 0; k < iK; k++)
        {
          ret[i][j] = (ret[i][j] + a[i][k] * b[k][j] ) % s_llMod;
        }
      }
    }
    return ret;
  }
  // 矩阵快速幂
  static vector<vector<long long>> pow( const vector<vector<long long>>& a, vector<vector<long long>> b, long long n) {
    vector<vector<long long>> res = a;
    for (; n; n /= 2) {
      if (n % 2) {
        res = multiply(res, b);
      }
      b = multiply(b, b);
    }
    return res;
  }
  static vector<vector<long long>> TotalRow(const vector<vector<long long>>& a)
  {
    vector<vector<long long>> b(a.front().size(), vector<long long>(1, 1));
    return multiply(a, b);
  }
protected:
  const static long long s_llMod = 1e9 + 7;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<vector<long long>> pre = { {1,2} };
  vector<vector<long long>> mat = { {2,3},{1,10} };
  { 
    auto res = CMat::pow(pre, mat, 0);
    Assert(pre, res);
  }
  {
    auto res = CMat::multiply(pre, mat);
    Assert(vector<vector<long long>>{ {4, 23}}, res);
    auto res2 = CMat::pow(pre, mat,1);
    Assert(res2, res);
  }
  {
    auto res = CMat::pow(pre, mat, 2);
    auto res1 = CMat::multiply(pre, mat);
    auto res2 = CMat::multiply(res1, mat);
    Assert(res2, res);
    Assert(vector<vector<long long>>{ {31, 242}}, res);
  };
  for (int i = 3; i < 100; i++)
  {
    auto res = pre;
    for (int j = 0; j < i; j++)
    {
      res = CMat::multiply(res, mat);
    }
    auto res2 = CMat::pow(pre, mat, i);
    Assert(res2, res);
  }
}

具体例子

题目、分析和原理见:

【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II

原解法用二维表示状态,改成一维。 i是缺勤数量,j是连续迟到数,新的状态为:3*i+j

6种状态,故转移矩阵为6行6列,故结果矩阵为6列,6个数据1行就足够了。

令旧结果矩阵为mat1,转移矩阵为mat2,新矩阵为mat3,K mat1的列数,mat2的行数。则:

mat3[r][c] = Sum[ 0 , k ) i ^{i}_{[0,k)}[0,k)i(mat1[r][i]*mat2[i][c])

i在mat1中列号,在mat2中是行号。 也就是旧状态在第几列,mat2就在第几行。

新状态就是mat2的行号。

class Solution {
public:
  int checkRecord(int n) {
    vector<vector<long long>> pre(1, vector<long long>(6));//1行6列 
    pre[0][0] = 1;
    vector<vector<long long>> mat(6, vector<long long>(6));
    { 
      //之前的状态在pre是第几列,矩阵中就是第几行。新状态的列号就矩阵的列号
      //处理一次缺勤 ,缺勤两次排除
      for (int i = 0; i < 3; i++)
      {
        mat[i][3]++;
      }
      //处理请假
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 2; j++)
        {
          const int pre = 3 * i + j;
          mat[pre][pre + 1]++;
        }
      }
      //处理正常
      for (int i = 0; i < 2; i++)
      {
        for (int j = 0; j < 3; j++)
        {
          const int pre = 3 * i + j;
          const int cur = 3 * i;
          mat[pre][cur]++;
        }
      }
    }
    auto res = CMat::pow(pre, mat, n);
    res = CMat::TotalRow(res);
    return res[0][0];
  }
};

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}
int main()
{
int n;
{
Solution sln;
n = 0;
auto res = sln.checkRecord(n);
Assert(1, res);
}
{
Solution sln;
n = 1;
auto res = sln.checkRecord(n);
Assert(3, res);
}
{
Solution sln;
n = 2;
auto res = sln.checkRecord(n);
Assert(8, res);
}
{
Solution sln;
n = 3;
auto res = sln.checkRecord(n);
Assert(19, res);
}
{
Solution sln;
n = 4;
auto res = sln.checkRecord(n);
Assert(43, res);
}
{
Solution sln;
n = 5;
auto res = sln.checkRecord(n);
Assert(94, res);
}
{
Solution sln;
n = 6;
auto res = sln.checkRecord(n);
Assert(200, res);
}
{
Solution sln;
n = 7;
auto res = sln.checkRecord(n);
Assert(418, res);
}
{
Solution sln;
n = 10101;
auto res = sln.checkRecord(n);
Assert(183236316, res);
}
}


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。

相关文章
|
2月前
Mybatis+mysql动态分页查询数据案例——测试类HouseDaoMybatisImplTest)
Mybatis+mysql动态分页查询数据案例——测试类HouseDaoMybatisImplTest)
22 1
|
2月前
|
Java
【Java每日一题】— —第二十一题:编程把现实生活的手机事物映射成一个标准类Phone,并定义一个测试类PhoneDemo测试Phone类的功能
【Java每日一题】— —第二十一题:编程把现实生活的手机事物映射成一个标准类Phone,并定义一个测试类PhoneDemo测试Phone类的功能
37 0
|
3月前
|
算法 测试技术 C++
【矩阵快速幂】封装类及测试用例及样例
【矩阵快速幂】封装类及测试用例及样例
|
2月前
|
Java
java面向对象高级分层实例_测试类(main方法所在的类)
java面向对象高级分层实例_测试类(main方法所在的类)
11 1
|
2月前
|
测试技术 Python
在Python中测试类
在Python中测试类
12 1
|
3月前
|
数据可视化 jenkins 测试技术
可视化BI类产品如何设计测试框架?
可视化BI类产品如何设计测试框架?
|
测试技术 数据库 数据安全/隐私保护
测试用例设计之业务流程分析法
测试用例设计之业务流程分析法
205 0
测试用例设计之业务流程分析法
|
算法 Java 测试技术
边界值分析法测试用例设计实例
边界值分析法是黑盒测试的重要方法,本文以一道数位DP算法题为例,自主测试黑盒测试用例,并采用JUnit5完成单元测试。
140 0
|
安全 Java 测试技术
python接口自动化(三)--如何设计接口测试用例(详解)
上篇我们已经介绍了什么是接口测试和接口测试的意义。在开始接口测试之前,我们来想一下,如何进行接口测试的准备工作。或者说,接口测试的流程是什么?有些人就很好奇,接口测试要流程干嘛?不就是拿着接口文档直接利用接口 测试工具测试嘛。其实,如果只是三五个接口,你可以这么做一个临时的接口测试。但是,如果是上百个接口,或者,你们公司的这个项目,第一次做接口测试,那么,我们还是很有必要严格遵守接口测试的流程。
296 0
python接口自动化(三)--如何设计接口测试用例(详解)
|
测试技术
正交试验测试用例设计及工具推荐
在科研和生产实践中,人们往往要做许多次实验来进行某项研究。实验条件一般包括很多因素,当因素的值不同时,实验的结果也不一样。如果想把每个因素的每个值都要实验一遍,总实验数就等于各因素的值的个数的乘积,而这个数往往很大,超过了可接受的成本。 例如,假设某个实验由A,B,C,D四个因素,每个因素都有10个不同的取值,那么如果想把每个因素都考虑到,我们需要做 10*10*10*10=10000次实验。 为了减少实验数目,我们必须选出那些最有代表性的例子。于是,就要用到了正交表法(Orthogonal Array Testing Strategy)。
244 0
正交试验测试用例设计及工具推荐