Scikit-Learn 中级教程——学习曲线

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: Scikit-Learn 中级教程——学习曲线

Python Scikit-Learn 中级教程:学习曲线

学习曲线是一种评估机器学习模型性能的可视化工具,它可以帮助我们理解模型在不同训练数据大小下的表现。在本篇博客中,我们将深入介绍学习曲线的概念,并使用 Scikit-Learn 中的工具绘制学习曲线。

1. 为什么需要学习曲线?

学习曲线有助于回答以下问题:

  • 模型的性能如何随着训练数据的增加而变化?
  • 是否存在过拟合或欠拟合的现象?
  • 增加更多的训练数据是否有助于提高模型性能?
  • 通过分析学习曲线,我们能够更好地了解模型的训练状态,并做出优化决策。

2. 如何绘制学习曲线?

Scikit-Learn 中的 learning_curve 函数可以用于绘制学习曲线。下面是一个简单的例子:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC

# 加载手写数字数据集
digits = load_digits()

# 定义支持向量机模型
model = SVC(kernel='linear')

# 绘制学习曲线
train_sizes, train_scores, test_scores = learning_curve(model, digits.data, digits.target, cv=5, train_sizes=np.linspace(0.1, 1.0, 10))

# 计算训练集和测试集得分的均值和标准差
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

# 绘制学习曲线图
plt.figure(figsize=(10, 6))
plt.plot(train_sizes, train_scores_mean, label='训练集得分', marker='o')
plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2)
plt.plot(train_sizes, test_scores_mean, label='测试集得分', marker='o')
plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2)
plt.xlabel('训练样本数量')
plt.ylabel('得分')
plt.legend()
plt.title('学习曲线')
plt.show()

3. 学习曲线的解读

学习曲线通常包括训练集和测试集的得分曲线,以及它们的标准差区域。在解读学习曲线时,需要注意以下几点:

  • 欠拟合(High Bias)的模型:训练集和测试集得分都很低,增加训练数据量可能无法显著提高模型性能。

  • 过拟合(High Variance)的模型:训练集得分很高,但测试集得分较低,增加训练数据量可能有助于提高模型性能。

  • 合适的模型:训练集和测试集得分都相对较高,且两者的得分差距较小,说明模型拟合得较好。

4. 总结

学习曲线是一个强大的工具,可以帮助我们更好地理解模型在不同训练数据大小下的表现。通过分析学习曲线,我们可以判断模型是否存在欠拟合或过拟合,并据此调整模型或数据。希望本篇博客对你理解和绘制学习曲线有所帮助!

目录
相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
301 0
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
169 2
|
1月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
259 1
|
1月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
121 1
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
679 19
|
1月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
146 4
|
2月前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
人工智能 Python 资源调度
Python计算&绘图——曲线拟合问题(转)
题目来自老师的课后作业,如下所示。很多地方应该可以直接调用函数,但是初学Python,对里面的函数还不是很了解,顺便带着学习的态度,尽量自己动手code。             测试版代码,里面带有很多注释和测试代码:   [python] view plain copy  ...
1501 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
286 102

推荐镜像

更多