One Trick Per Day

简介: Java基础

1.初始化Map大小并非用多少指定多少

  • 初始化Map并非用多少初始化Size是多少,建议使用Guava,避免扩容引起的动荡()

说明

  • 如:Map<String, String> map = new HashMap<>(1); 在具体使用时,并非size=1,而是最近的2的幂等,如1实际是2,3实际是4,9实际是16

使用方法

  • 依赖gvaua:Map<String, String> map = Maps.newHashMapWithExpectedSize(7);
<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>17.0</version>
</dependency>
  • 手动声明:Map<String, String> map = new HashMap<>(实际存储个数 / 0.75 + 1);

2.线程池初始化严禁使用Executors

使用线程池时候,我们可能会使用下面四个场景,这在alibaba代码规范中都是明令禁止的

// 创建一个单线程化的Executor[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
// 创建一个固定数目线程的线程池[因为数量固定,可能会堆积大量请求,导致OOM]
private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10);
// 创建一个可执行命令的单线程Executor[可能会创建大量的线程,导致OOM]
private static ExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor();
// 创建一个可缓存的线程池(60S存活时间)[可能会创建大量的线程,导致OOM]
private static ExecutorService cachedThreadPool = Executors.newCachedThreadPool();

我们先来一个简单的例子,模拟一下使用 Executors 导致 OOM 的情况。

public class ExecutorsDemo {
    private static ExecutorService executor = Executors.newFixedThreadPool(15);
    public static void main(String[] args) {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            executor.execute(new SubThread());
        }
    }
}
class SubThread implements Runnable {
    @Override
    public void run() {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            //do nothing
        }
    }
}

通过指定 JVM 参数:-Xmx8m -Xms8m 运行以上代码,会抛出 OOM:

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded 
 at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
 at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
 at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

以上代码指出,ExecutorsDemo.java 的第 16 行,就是代码中的 executor.execute(new SubThread());。

通过上面的例子,我们知道了 Executors 创建的线程池存在 OOM 的风险,那么到底是什么原因导致的呢?我们需要深入 Executors 的源码来分析一下。其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致 OOM 的其实是 LinkedBlockingQueue.offer 方法。

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
 at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
 at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
 at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

如果读者翻看代码的话,也可以发现,其实底层确实是通过 LinkedBlockingQueue 实现的:

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

如果读者对 Java 中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。Java 中 的 BlockingQueue 主 要 有 两 种 实 现, 分 别 是 ArrayBlockingQueue LinkedBlockingQueue。ArrayBlockingQueue 是一个用数组实现的有界阻塞队列,必须设置容量。LinkedBlockingQueue 是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为 Integer.MAX_VALUE。这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置 LinkedBlockingQueue 的容量的话,其默认容量将会是 Integer.MAX_VALUE。 而 newFixedThreadPool 中创建 LinkedBlockingQueue 时,并未指定容量。此时,LinkedBlockingQueue 就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。上面提到的问题主要体现在 newFixedThreadPool 和 newSingleThreadExecutor 两个工厂方法上,并不是说newCachedThreadPool 和 newScheduledThreadPool 这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致 OOM


正确使用:

private static ExecutorService executor = new ThreadPoolExecutor(10, 10, 60L, TimeUnit.SECONDS,
                                                                 new ArrayBlockingQueue(10));

这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。

但是部分alibaba作者更推荐使用guava创建对应的线程池,示例如下:

public class ExecutorsDemo {
    private static ThreadFactory namedThreadFactory = new
            ThreadFactoryBuilder()
            .setNameFormat("demo-pool-%d").build();
    private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
            0L, TimeUnit.MILLISECONDS,
            new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new
            ThreadPoolExecutor.
                    AbortPolicy());
    public static void main(String[] args) {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            pool.execute(new SubThread());
        }
    }
}

通过上述方式创建线程时,不仅可以避免 OOM 的问题,还可以自定义线程名称,更加方便的出错的时候溯源。

3.Arrays.asList之后不要调用修改操作

String[] str = new String[] { "you", "wu" };
List list = Arrays.asList(str);

因为asList返回的实际是一个Arrays内部类,并没有实现集合的修改方法(add/remove/clear)// 当操作修改方法时,会报UnsupportedOperationException。

第一种情况:list.add("yangguanbao"); 运行时异常。

第二种情况:str[0] = "gujin"; 那么 list.get(0)也会随之修改。[涉及栈堆指针操作,修改数组的数据,导致同样引用该数据的list值被改变]

4.使用 entrySet 遍历 Map 类集合 KV

说明:keySet 其实是遍历了 2 次,一次是转为 Iterator 对象,另一次是从 hashMap 中取出key 所对应的 value。而 entrySet 只是遍历了一次就把 key 和 value 都放到了 entry 中,效率更高。

如果是 JDK8,使用 Map.foreach 方法。

正例:values()返回的是 V 值集合,是一个 list 集合对象;keySet()返回的是 K 值集合,是一个 Set 集合对象;entrySet()返回的是 K-V 值组合集合。

5.SimpleDateFormat不要定义为static

SimpleDateFormat 是线程不安全的类,一般不要定义为 static 变量,如果定义为static,必须加锁,或者使用 DateUtils 工具类

正例:注意线程安全,使用 DateUtils。亦推荐如下处理:

private static final ThreadLocal<DateFormat> df = new ThreadLocal<DateFormat>() { 
  @Override 
  protected DateFormat initialValue() { 
    return new SimpleDateFormat("yyyy-MM-dd"); 
  } 
};

说明:如果是 JDK8 的应用,可以使用 Instant 代替 DateLocalDateTime 代替 CalendarDateTimeFormatter 代替 SimpleDateFormat,官方给出的解释:simple beautiful strong immutable thread-safe。

6.并发修改同一记录时需要加锁

要么在应用层加锁,要么在缓存加锁,要么在数据库层使用乐观锁,使用 version 作为更新依据。

说明:如果每次访问冲突概率小于 20%,推荐使用乐观锁,否则使用悲观锁。乐观锁的重试次数不得小于 3 次

相关文章
|
6天前
|
机器学习/深度学习 缓存 数据可视化
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
17 1
[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity
|
6天前
|
存储 缓存 安全
|
9月前
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
143 0
|
9月前
|
机器学习/深度学习 自然语言处理
【论文精读】COLING 2022 - DESED: Dialogue-based Explanation for Sentence-level Event Detection
最近许多句子级事件检测的工作都集中在丰富句子语义上,例如通过多任务或基于提示的学习。尽管效果非常好,但这些方法通常依赖于标签广泛的人工标注
59 0
|
11月前
|
机器学习/深度学习 存储 自然语言处理
【论文解读】A review on the attention mechanism of deep learning
注意力已经成为深度学习中最重要的概念之一。本文旨在对近年来提出的最新注意力模型作概述。我们建立了一个较为通用的模型,此外根据四个标准即注意力的柔软性、输入特征的形式、输入表示和输出表示来对当前注意力模型进行分类。最后讨论了注意力在深度学习可解释上的作用。
239 0
|
机器学习/深度学习 存储 分布式计算
【深度学习系列】(二)--An overview of gradient descent optimization algorithms
【深度学习系列】(二)--An overview of gradient descent optimization algorithms
91 0
【深度学习系列】(二)--An overview of gradient descent optimization algorithms
|
计算机视觉
目标检测的Tricks | 【Trick1】Label Smoothing
目标检测的Tricks | 【Trick1】Label Smoothing
136 0
|
算法 数据挖掘 计算机视觉
YOLOv5的Tricks | 【Trick5】遗传算法实现超参数进化(Hyperparameter Evolution)
YOLOv5的Tricks | 【Trick5】遗传算法实现超参数进化(Hyperparameter Evolution)
681 0
YOLOv5的Tricks | 【Trick5】遗传算法实现超参数进化(Hyperparameter Evolution)
|
机器学习/深度学习 算法 PyTorch
YOLOv5的Tricks | 【Trick1】关于激活函数Activation的改进汇总
YOLOv5的Tricks | 【Trick1】关于激活函数Activation的改进汇总
798 0
YOLOv5的Tricks | 【Trick1】关于激活函数Activation的改进汇总
|
编译器 C++
C++ Trick:什么时候需要前置声明?
经常有C++开发的小伙伴提问: C++中要使用类A时,什么时候#include "a.h",什么时候用class A前置声明呢?
201 0