离线数仓6.0--- 数据仓库概述

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 大数据学习

1.1 数据仓库概念

数据仓库是一个为数据分析而设计的企业级数据管理系统。数据仓库可集中、整合多个信息源的大量数据,借助数据仓库的分析能力,企业可从数据中获得宝贵的信息进而改进决策。同时,随着时间的推移,数据仓库中积累的大量历史数据对于数据科学家和业务分析师也是十分宝贵的。

1.2 数据仓库核心架构

image.png

image.png

Spark计算过程中,存在shuffle的操作,而shuffle会将计算过程一分为二,分为2个阶段(Stage)

从计算流程来讲,前一个阶段如果不执行完,后一个阶段不允许执行

数据仓库中的不同步骤也存在同样的情况,前面的步骤不执行完,后面的步骤不允许执行

数据仓库中不称之为阶段,称之为层,每一层就有自己的名称以及对应的逻辑和概念

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

2.1 数据仓库建模的意义

数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。只有将数据有序的组织和存储起来之后,数据才能得到高性能、低成本、高效率、高质量的使用。

Ø 高性能:良好的数据模型能够帮助我们快速查询所需要的数据。

Ø 低成本:良好的数据模型能减少重复计算,实现计算结果的复用,降低计算成本。

Ø 高效率:良好的数据模型能极大的改善用户使用数据的体验,提高使用数据的效率。

Ø 高质量:良好的数据模型能改善数据统计口径的混乱,减少计算错误的可能性。

image.png

image.png

image.png

image.png

image.png

image.png

image.png

2.2 数据仓库建模方法论

2.2.1 ER模型

数据仓库之父Bill Inmon提出的建模方法是从全企业的高度,用实体关系(Entity Relationship,ER)模型来描述企业业务,并用规范化的方式表示出来,在范式理论上符合3NF。

1)实体关系模型

实体关系模型将复杂的数据抽象为两个概念——实体和关系。实体表示一个对象,例如学生、班级,关系是指两个实体之间的关系,例如学生和班级之间的从属关系。

2)数据库规范化

数据库规范化是使用一系列范式设计数据库(通常是关系型数据库)的过程,其目的是减少数据冗余,增强数据的一致性。

这一系列范式就是指在设计关系型数据库时,需要遵从的不同的规范。关系型数据库的范式一共有六种,分别是第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF)。遵循的范式级别越高,数据冗余性就越低。

image.png

image.png

image.png

image.png

image.png

获取所有数学满分的学生名称

select sname from t_user where cid = 数学 and score = 100

select a.sname from t_user a join t_score b on a.id = b.sid where b.cid = 数学 and b.score = 100

image.png

获取学生编号1002的学生姓名以及老师的姓名

select sname, tname from t_student where id = 1002

select a.sname, b.tname from t_student a join t_teacher b on a.tid = b.id where a.id = 1002

相关实践学习
数据库实验室挑战任务-初级任务
本场景介绍如何开通属于你的免费云数据库,在RDS-MySQL中完成对学生成绩的详情查询,执行指定类型SQL。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
1月前
|
SQL 存储 大数据
数据仓库(10)数仓拉链表开发实例
拉链表是数据仓库中特别重要的一种方式,它可以保留数据历史变化的过程,这里分享一下拉链表具体的开发过程。 维护历史状态,以及最新状态数据的一种表,拉链表根据拉链粒度的不同,实际上相当于快照,只不过做了优化,去除了一部分不变的记录,通过拉链表可以很方便的还原出拉链时点的客户记录。
107 13
数据仓库(10)数仓拉链表开发实例
|
1月前
|
存储 JSON 大数据
大数据离线数仓---金融审批数仓
大数据离线数仓---金融审批数仓
112 1
|
3月前
|
SQL 关系型数据库 MySQL
在云数据仓库AnalyticDB MySQL版中,有几个参数可能影响SELECT查询的执行及其稳定性
在云数据仓库AnalyticDB MySQL版中,有几个参数可能影响SELECT查询的执行及其稳定性【1月更文挑战第16天】【1月更文挑战第80篇】
35 4
|
1月前
|
分布式计算 大数据 Hadoop
数据仓库(13)大数据数仓经典最值得阅读书籍推荐
从事数仓工作,在工作学习过程也看了很多数据仓库方面的数据,此处整理了数仓中经典的,或者值得阅读的书籍,推荐给大家一下,希望能帮助到大家。建议收藏起来,后续有新的书籍清单会更新到这里。
80 2
数据仓库(13)大数据数仓经典最值得阅读书籍推荐
|
1月前
|
SQL 数据采集 存储
数据仓库(12)数据治理之数仓数据管理实践心得
这边文章聊聊自己对数据治理开发实践的一些思路,就是聊聊怎么开始去做数据治理这件事情。说起数据治理,有时候虽然看了很多文章,看了很多的介绍,了解数据治理的理论,但是实际上需要我们去搞的时候,就会踩很多的坑。这里记一下自己做数据治理的一些思路,做做笔记,也分享给需要的同学。 当然,想要做数据治理,想要学习了解,一下数据治理的范围,理论等,最好可以看看别人怎么做的,了解数据治理可以参考:[数据仓库(11)什么是大数据治理,数据治理的范围是哪些](https://zhuanlan.zhihu.com/p/467433967)。
136 0
|
1月前
|
存储 SQL HIVE
金融审批数仓(离线)--DWD层、ADS层
金融审批数仓(离线)--DWD层、ADS层
61 4
|
1月前
|
存储 大数据 数据管理
数据仓库(09)数仓缓慢变化维度数据的处理
数据仓库的重要特点之一是反映历史变化,所以如何处理维度的变化是维度设计的重要工作之一。缓慢变化维的提出是因为在现实世界中,维度的属性并不是静态的,它会随着时间的流逝发生缓慢的变化,与数据增长较为快速的事实表相比,维度变化相对缓慢。阴齿这个就叫做缓慢变化维。
207 2
数据仓库(09)数仓缓慢变化维度数据的处理
|
1月前
|
SQL Cloud Native 关系型数据库
AnalyticDB MySQL湖仓版是一个云原生数据仓库
【2月更文挑战第15天】AnalyticDB MySQL湖仓版是一个云原生数据仓库
22 2
|
2月前
|
SQL 分布式计算 数据库
离线数仓--大数据技术之DolphinScheduler
离线数仓--大数据技术之DolphinScheduler
127 2
|
3月前
|
存储 数据挖掘 BI
离线数据仓库规范
离线数据仓库规范