C++服务器开发之定时器设计方案

简介: 定时器应⽤:1.⼼跳检测 2.技能冷却 3.武器冷却 4.倒计时 5.其它需要使⽤超时机制的功能

定时器应⽤

  • ⼼跳检测
  • 技能冷却
  • 武器冷却
  • 倒计时
  • 其它需要使⽤超时机制的功能

适合定时器的数据结构有红黑树,最小堆,跳表,时间轮,其中最小堆实现的定时器最常见

最小堆的堆顶永远是最小的,超时检测时只需要从堆顶开始检测就行

时间获取与定时函数

由于是跨平台,所以不使用操作系统所提供的,

linux下可以使用timerfd,timerfd被抽象成fd文件,配合epoll_wait的timeout参数可以使心跳线程和工作线程处于同一线程,避免伪心跳包出现

c++提供三种获取时间的类

  1. std::chrono::system_clock
  2. std::chrono::steady_clock
  3. std::chrono::high_resolution_clock

由于system_clock是获取系统时间,如果系统时间被更改,或者网络校时,都会使时间被更改,所以不适合使用,steady_clock是只会自增(例如开机时间),high_resolution_clock在不同的系统中可能有不同的实现(通常它只是 std::chrono::steady_clock或 std::chrono::system_clock的别名),所以我们选择std::chrono::steady_clock

而定时则选取std::condition_variable::wait_until函数

定时器接口

最小堆实现

对于每一个任务都要有以下几个基本字段描述

  • 超时后调用的回调函数
  • 超时的时长
  • 以及一个该任务是否一直执行的标志

对于每一个定时器有几个基本方法描述

  • 初始化一个定时器
  • 添加任务
  • 执行到期任务

c++对象封装后的代码

timer.h
#pragma once
#include <functional>
#include <chrono>
#include <queue>
#include <mutex>
#include <condition_variable>

using timedTesk = std::function<void()>;
using timeDuration = std::chrono::milliseconds;
using timePoint = std::chrono::time_point<std::chrono::steady_clock>;

class timerNode {
   
public:
    bool operator < (const timerNode& obj) const {
    return point > obj.getPoint(); }

    timePoint getPoint() const {
    return point; }

    timerNode(int milliseconds, timedTesk fun, bool keep);
    timerNode(const timerNode& obj);

    void operator()() const {
    tesk(); }
    bool is_keep() const {
    return keep; }

    //刷新超时时间点
    void flush();
private:
    timedTesk       tesk;//定时任务
    bool            keep;//是否保活
    timeDuration    time;//超时时长
    timePoint       point;//执行的时间点
};

class timer
{
   
public:
    //添加任务
    void addTimer(int time, timedTesk tesk, bool keep);

    //执行定时器
    void start();

    //销毁定时器
    void destroy();

private:

    //执行到期任务:expire_timer
    void expire_timer();

private:
    //存放定时任务的小根堆
    std::priority_queue<timerNode, std::vector<timerNode>, std::less<timerNode>> queue;

    //保证小根堆线程安全
    std::mutex que_mtx;

    //定时器销毁标志
    bool is_destroy;

    //定时std::condition_variable::wait_until
    std::mutex mtx;
    std::condition_variable cv;
};
timer.cpp
#include "timer.h"
#include <climits>
#include <thread>

timerNode::timerNode(int milliseconds, timedTesk fun, bool keep)
    :time(milliseconds), tesk(fun), keep(keep)
{
   
    flush();
}

timerNode::timerNode(const timerNode& obj) :time(obj.time), tesk(obj.tesk), keep(obj.keep)
{
   
    flush();
}

void timerNode::flush()
{
   
    point = std::chrono::steady_clock::now() + time;
}

void timer::addTimer(int time, timedTesk tesk, bool keep)
{
   
    std::lock_guard<std::mutex> lock(que_mtx);
    queue.emplace(time, tesk, keep);
    cv.notify_one();
}

void timer::start()
{
   
    is_destroy = false;
    std::thread th(&timer::expire_timer, this);
    th.detach();
}

void timer::destroy()
{
   
    is_destroy = true;
}

void timer::expire_timer()
{
   
    while (!is_destroy)
    {
   
        std::unique_lock<std::mutex> lock(mtx);
        //获取堆顶时间,没有则wait一个最大时间
        auto time = queue.empty() ? std::chrono::steady_clock::now() + std::chrono::hours(INT_MAX) : queue.top().getPoint();
        if (cv.wait_until(lock, time) == std::cv_status::no_timeout) {
   //有新的定时任务加入
            //新任务中可能存在比之前超时时间更小的任务,通过continue刷新超时时间
            continue;
        }
        else {
   
            //处理超时任务
            while (!queue.empty() && queue.top().getPoint() < std::chrono::steady_clock::now())
            {
   
                timerNode node = queue.top();
                {
   
                    std::lock_guard<std::mutex> lock_(que_mtx);
                    queue.pop();
                    /*
                    如果tesk设置了keep为true,但是直接修改超时的时间点的话tesk对象在小根堆中的位置不会改变,所以只能通过先pop在push的方式更新tesk节点在小根堆中的位置
                    */
                    if (node.is_keep())
                        queue.emplace(node);
                }
                node();//执行tesk运算符重载函数
            }
        }
    }
}
目录
相关文章
|
6月前
|
定位技术
GPS北斗卫星同步时钟(时间同步服务器)建设施工部署方案
GPS北斗卫星同步时钟(时间同步服务器)建设施工部署方案
GPS北斗卫星同步时钟(时间同步服务器)建设施工部署方案
|
20天前
|
存储 Unix Linux
服务器数据恢复—DELL EqualLogic PS6100系列存储简介及发生故障后的处理方案
DELL EqualLogic PS6100系列存储采用虚拟ISCSI SAN阵列,支持VMware、Solaris、Linux、Mac、HP-UX、AIX操作系统,提供全套企业级数据保护和管理功能,具有可扩展性和容错功能。
|
1月前
|
Linux C语言 C++
vsCode远程执行c和c++代码并操控linux服务器完整教程
这篇文章提供了一个完整的教程,介绍如何在Visual Studio Code中配置和使用插件来远程执行C和C++代码,并操控Linux服务器,包括安装VSCode、安装插件、配置插件、配置编译工具、升级glibc和编写代码进行调试的步骤。
195 0
vsCode远程执行c和c++代码并操控linux服务器完整教程
|
2月前
|
存储 运维 监控
服务器高效运维管理方案
智能运维作为保障业务连续性和提升系统性能的关键环节,其重要性日益凸显。服务器作为承载各类应用与数据的核心基础设施,其稳定性、安全性和性能直接关系到企业的业务运行效率和用户体验
69 1
|
2月前
|
存储 弹性计算 SDN
企业级 ECS 集群的构建需要综合考虑多个因素,通过不断的比较和对比不同的方案,选择最适合企业自身需求和发展的架构。
【9月更文挑战第5天】在数字化商业环境中,构建企业级ECS(弹性计算服务)集群对提升业务稳定性、扩展性和性能至关重要。本文将比较传统物理服务器与ECS架构,分析云服务商选择(如AWS和阿里云)、实例配置(CPU/内存)、网络架构(SDN vs 传统)及存储方案(本地存储 vs 云存储),帮助企业根据自身需求选出最优方案,实现高效稳定的ECS集群部署。
69 18
|
1月前
|
存储 监控 NoSQL
Redis的实现二: c、c++的网络通信编程技术,让服务器处理多个client
本文讨论了在C/C++中实现服务器处理多个客户端的技术,重点介绍了事件循环和非阻塞IO的概念,以及如何在Linux上使用epoll来高效地监控和管理多个文件描述符。
27 0
|
3月前
|
弹性计算 运维 搜索推荐
阿里云建站方案参考:云服务器、速成美站、企业官网区别及选择参考
随着数字化转型的浪潮不断推进,越来越多的企业和公司开始将业务迁移到云端,而搭建一个专业、高效的企业官网成为了上云的第一步。企业官网不仅是展示公司形象、产品和服务的重要窗口,更是与客户沟通、传递价值的关键渠道。随着阿里云服务器和建站产品的知名度越来越高,越来越多的用户选择阿里云的产品来搭建自己的官网。本文将深入探讨在阿里云平台上,如何选择最适合自己的建站方案:云服务器建站、云·速成美站还是云·企业官网。
199 13
阿里云建站方案参考:云服务器、速成美站、企业官网区别及选择参考
|
3月前
|
存储 安全 数据安全/隐私保护
服务器数据恢复—服务器raid常见故障的数据恢复方案
磁盘阵列(raid)是一种将多块物理硬盘整合成一个虚拟存储的技术。raid模块相当于一个存储管理中间层,上层接收并执行操作系统及文件系统的数据读写指令,下层管理数据在各个物理硬盘上的存储及读写。相对于单独的物理硬盘,raid可以为用户提供更大的独立存储空间,更快的读写速度,更高的数据存储安全及更方便的统一管理模式。磁盘阵列的正常运行是保障服务器中数据正常读写的关键。
服务器数据恢复—服务器raid常见故障的数据恢复方案
|
3月前
|
微服务
【Azure Cloud Services】云服务频繁发生服务器崩溃的排查方案
【Azure Cloud Services】云服务频繁发生服务器崩溃的排查方案
|
5月前
|
弹性计算 运维 Java
解决方案测评(高效构建企业门户网站方案)基于ecs&云效&云解析DNS&VPC结合的自搭建方案报告
该文档是一个关于使用ECS、云效、云解析DNS和VPC结合的自搭建方案报告。主要内容包括前言部分,可能详细探讨了如何集成这些阿里云服务以构建自定义系统。由于提供的内容有限,具体的实施方案和细节未在摘要中体现。
221 2